Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 098501    DOI: 10.1088/0256-307X/36/9/098501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates
Xue-Hui Lu1,2**, Cheng-Bin Jing1**, Lian-Wei Wang1, Jun-Hao Chu1,3
1Key Laboratory of Polar Materials and Devices (Ministry of Education), Institute of Functional Materials, Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241
2Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433
3State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
Cite this article:   
Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang et al  2019 Chin. Phys. Lett. 36 098501
Download: PDF(582KB)   PDF(mobile)(572KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We design and fabricate a good performance silicon photoconductive terahertz detector on sapphire substrates at room temperature. The best voltage responsivity of the detector is 6679 V/W at frequency 300 GHz as well as low voltage noise of 3.8 nV/Hz$^{1/2}$ for noise equivalent power 0.57 pW/Hz$^{1/2}$. The measured response time of the device is about 9 μs, demonstrating that the detector has a speed of $>$110 kHz. The achieved good performance, together with large detector size (acceptance area is 3 μm$\times 160$ μm), simple structure, easy manufacturing method, compatibility with mature silicon technology, and suitability for large-scale fabrication of imaging arrays provide a promising approach to the development of sensitive terahertz room-temperature detectors.
Received: 25 June 2019      Published: 23 August 2019
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Sx (Metal-semiconductor-metal structures)  
  95.55.Rg (Photoconductors and bolometers)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61775060 and 61275100.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/098501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/098501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Hui Lu
Cheng-Bin Jing
Lian-Wei Wang
Jun-Hao Chu
[1]Tonouchi M 2007 Nat. Photon. 1 97
[2]Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[3]Fan R H, Zhou Y, Ren X P et al 2015 Adv. Mater. 27 1201
[4]Ulbricht R, Hendry E, Shan J et al 2011 Rev. Mod. Phys. 83 543
[5]Wu Y, La-o-vorakiat C, Qiu X et al 2015 Adv. Mater. 27 1874
[6]Hanham S M, Fernández-Domínguez A I, Teng J H et al 2012 Adv. Mater. 24 OP226
[7]Ho L, Pepper M and Taday P 2008 Nat. Photon. 2 541
[8]Davies A G, Burnett A D, Fan W et al 2008 Mater. Today 11 18
[9]Yamashita M, Kawase K, Otani C et al 2005 Opt. Express 13 115
[10]Vicarelli L, Vitiello M S, Coquillat D et al 2012 Nat. Mater. 11 865
[11]Son J H 2009 J. Appl. Phys. 105 102033
[12]Woodward R M, Cole B E, Wallace V P et al 2002 Phys. Med. Biol. 47 3853
[13]Oh S J, Kang J, Maeng I et al 2009 Opt. Express 17 3469
[14]Nagel M, Bolivar P H, Brucherseifer M et al 2002 Appl. Phys. Lett. 80 154
[15]Wu Q, Litz M and Zhang X C 1996 Appl. Phys. Lett. 68 2924
[16]Hu B B, Zhang X C, Auston D H et al 1990 Appl. Phys. Lett. 56 506
[17]Xie X, Dai J and Zhang X C 2006 Phys. Rev. Lett. 96 075005
[18]Chen C Y, Hsieh C F, Lin Y F et al 2004 Opt. Express 12 2625
[19]Rodriguez B S, Yan R, Kelly M M et al 2012 Nat. Commun. 3 780
[20]Ojefors M, Pfeiffer U, Lisauskas A et al 2009 IEEE J. Solid-State Circuits 44 1968
[21]Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910
[22]Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378
[23]Ahmad Z, Lisauskas A, Roskos H G et al 2014 IEEE Int. Electron Devices Meet. 14 92
[24]Westlund A, Sangaré P, Ducournau G et al 2013 Appl. Phys. Lett. 103 133504
[25]Generalov A A, Andersson M A, Yang X X et al 2017 IEEE Trans. Terahertz Sci. Technol. 7 614
[26]Vitiello M S, Coquillat D, Viti L et al 2012 Nano Lett. 12 96
[27]Huang Z M, Tong J C, Huang J G et al 2014 Adv. Mater. 26 6594
[28]Huang Z M, Zhou W, Tong J C et al 2016 Adv. Mater. 28 112
[29]Sundaresan R, Mao B Y, Matloubian M, Chen C D and Pollack G P 1989 IEEE Trans. Electron Devices 36 1740
[30]Assaderaghi F, Shahidi G G, Wagner L et al 1997 IEEE Electron Device Lett. 18 241
[31]Jang S L and Lin H H 1999 Solid-State Electron. 43 2147
[32]Mashanovich G Z, Milošević M M, Nedeljkovic M et al 2011 Opt. Express 19 7112
[33]Tang W W, Liu C L, Wang L et al 2017 Appl. Phys. Lett. 111 153502
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 098501
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 098501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 098501
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 098501
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 098501
[6] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 098501
[7] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 098501
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 098501
[9] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 098501
[10] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 098501
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 098501
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 098501
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 098501
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 098501
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 098501
Viewed
Full text


Abstract