Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 084201    DOI: 10.1088/0256-307X/36/8/084201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle
Zhong-Hao Chen1,2,3, Hong-Wei Qu1,2, Xiao-Long Ma1,2,3, Ai-Yi Qi1,2, Xu-Yan Zhou1,2,3, Yu-Fei Wang1,2, Wan-Hua Zheng1,2,4**
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
4College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408
Cite this article:   
Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma et al  2019 Chin. Phys. Lett. 36 084201
Download: PDF(569KB)   PDF(mobile)(563KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-brightness tapered lasers with photonic crystal structures are designed and fabricated. A narrow taper angle is designed for the tapered section. The device delivers an output power of 3.3 W and a maximum wall-plug efficiency of 43%. The vertical beam divergence is around 11$^{\circ}$ at different currents. Nearly diffraction-limited beam qualities for the vertical and lateral directions are obtained. The lateral beam quality factor $M^{2}$ is below 2.5 and the vertical $M^{2}$ value is around 1.5 across the whole operating current range. The maximum brightness is 85 MW$\cdot$cm$^{-2}$sr$^{-1}$. When the current is above 3.3 A, the brightness is still above 80 MW$\cdot$cm$^{-2}$sr$^{-1}$.
Received: 20 March 2019      Published: 22 July 2019
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.60.Pk (Continuous operation)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0402203 and 2016YFA0301102, and the National Natural Science Foundation of China under Grant Nos 61535013 and 91850206.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/084201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/084201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Hao Chen
Hong-Wei Qu
Xiao-Long Ma
Ai-Yi Qi
Xu-Yan Zhou
Yu-Fei Wang
Wan-Hua Zheng
[1]Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938
[2]Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978
[3]Adamiec P, Sumpf B, Rüdiger I, Fricke J, Hasler K H, Ressel P, Wenzel H et al 2009 Opt. Lett. 34 2456
[4]Vilera M, Pérez-Serrano A, Tijero J M G and Esquivias I 2015 IEEE Photon. J. 7 1500709
[5]Sumpf B, Hasler K H, Adamiec P, Bugge F, Dittmar F, Fricke J, Wenzel H, Zorn M, Erbert G and Trankle G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1009
[6]Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trankle G 2012 Semicond. Sci. Technol. 27 015010
[7]Kelemen M T, Weber J, Kaufel G, Bihlmann G, Moritz R, Mikulla M and Weimann G 2005 Electron. Lett. 41 1011
[8]Fiebig C, Blume G, Kaspari C, Feise D, Fricke J, Matalla M, John W, Wenzel H, Paschke K and Erbert G 2008 Electron. Lett. 44 1253
[9]Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42
[10]Pagano R, Ziegler M, Tomm J W, Esquivias I, Tijero J M G, O'Callaghan J R, N Michel N, Krakowski M and Corbett B 2011 Appl. Phys. Lett. 98 221110
[11]Liu L, Qu H W, Wang Y F, Liu Y, Zhang Y J and Zheng W H 2014 Opt. Lett. 39 3231
[12]Heinrich A, Hagen C, Harlander M and Nussbaumer B 2014 Proc. SPIE 8965 89650W
[13]Buda M, Hay J, Tan H H, Wong-Leung J and Jagadish C 2003 IEEE J. Quantum Electron. 39 625
[14]Pietrzak A, Wenzel H, Crump P, Bugge F, Fricke J, Spreemann M, Erbert G and Trankle G 2012 IEEE J. Quantum Electron. 48 568
[15]Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G and Trankle G 2010 Appl. Phys. Lett. 96 131110
[16]Smowton P M, Lewis G M, Yin M, Summers H D, Berry G and Button C C 1999 IEEE J. Sel. Top. Quantum Electron. 5 735
[17]Malag A, Dabrowska E, Teodorczyk M, Sobczak G et al 2012 IEEE J. Quantum Electron. 48 465
[18]Liu Y, Qu H W, Zhao S Y, Zhou X Y, Wang Y F and Zheng W H 2017 Semicond. Sci. Technol. 32 01LT01
[19]Liu L, Qu H W, Liu Y, Wang Y F, Qi A Y, Guo X J, Zhao P C, Zhang Y J and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107
[20]Miah M J, Kettler T, Posilovic K, Kalosha P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105
[21]Miah M J, Kalosha V P, Bimberg D, Pohl J and Weyers M 2016 Opt. Express 24 30514
[22]Zhao S Y, Wang Y F, Qu H W, Liu Y, Zhou X Y, Liu A J and Zheng W H 2017 IEEE Photon. Technol. Lett. 29 2005
[23]Ma X L, Liu A J, Qu H W, Liu Y, Zhao P C, Guo X J and Zheng W H 2016 IEEE Photon. Technol. Lett. 28 2403
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 084201
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 084201
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 084201
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 084201
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 084201
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 084201
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 084201
[8] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 084201
[9] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 084201
[10] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 084201
[11] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 084201
[12] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 084201
[13] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 084201
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 084201
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 084201
Viewed
Full text


Abstract