FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle |
Zhong-Hao Chen1,2,3, Hong-Wei Qu1,2, Xiao-Long Ma1,2,3, Ai-Yi Qi1,2, Xu-Yan Zhou1,2,3, Yu-Fei Wang1,2, Wan-Hua Zheng1,2,4** |
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 4College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408
|
|
Cite this article: |
Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma et al 2019 Chin. Phys. Lett. 36 084201 |
|
|
Abstract High-brightness tapered lasers with photonic crystal structures are designed and fabricated. A narrow taper angle is designed for the tapered section. The device delivers an output power of 3.3 W and a maximum wall-plug efficiency of 43%. The vertical beam divergence is around 11$^{\circ}$ at different currents. Nearly diffraction-limited beam qualities for the vertical and lateral directions are obtained. The lateral beam quality factor $M^{2}$ is below 2.5 and the vertical $M^{2}$ value is around 1.5 across the whole operating current range. The maximum brightness is 85 MW$\cdot$cm$^{-2}$sr$^{-1}$. When the current is above 3.3 A, the brightness is still above 80 MW$\cdot$cm$^{-2}$sr$^{-1}$.
|
|
Received: 20 March 2019
Published: 22 July 2019
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.60.Pk
|
(Continuous operation)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0402203 and 2016YFA0301102, and the National Natural Science Foundation of China under Grant Nos 61535013 and 91850206. |
|
|
[1] | Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938 | [2] | Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978 | [3] | Adamiec P, Sumpf B, Rüdiger I, Fricke J, Hasler K H, Ressel P, Wenzel H et al 2009 Opt. Lett. 34 2456 | [4] | Vilera M, Pérez-Serrano A, Tijero J M G and Esquivias I 2015 IEEE Photon. J. 7 1500709 | [5] | Sumpf B, Hasler K H, Adamiec P, Bugge F, Dittmar F, Fricke J, Wenzel H, Zorn M, Erbert G and Trankle G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1009 | [6] | Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trankle G 2012 Semicond. Sci. Technol. 27 015010 | [7] | Kelemen M T, Weber J, Kaufel G, Bihlmann G, Moritz R, Mikulla M and Weimann G 2005 Electron. Lett. 41 1011 | [8] | Fiebig C, Blume G, Kaspari C, Feise D, Fricke J, Matalla M, John W, Wenzel H, Paschke K and Erbert G 2008 Electron. Lett. 44 1253 | [9] | Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42 | [10] | Pagano R, Ziegler M, Tomm J W, Esquivias I, Tijero J M G, O'Callaghan J R, N Michel N, Krakowski M and Corbett B 2011 Appl. Phys. Lett. 98 221110 | [11] | Liu L, Qu H W, Wang Y F, Liu Y, Zhang Y J and Zheng W H 2014 Opt. Lett. 39 3231 | [12] | Heinrich A, Hagen C, Harlander M and Nussbaumer B 2014 Proc. SPIE 8965 89650W | [13] | Buda M, Hay J, Tan H H, Wong-Leung J and Jagadish C 2003 IEEE J. Quantum Electron. 39 625 | [14] | Pietrzak A, Wenzel H, Crump P, Bugge F, Fricke J, Spreemann M, Erbert G and Trankle G 2012 IEEE J. Quantum Electron. 48 568 | [15] | Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G and Trankle G 2010 Appl. Phys. Lett. 96 131110 | [16] | Smowton P M, Lewis G M, Yin M, Summers H D, Berry G and Button C C 1999 IEEE J. Sel. Top. Quantum Electron. 5 735 | [17] | Malag A, Dabrowska E, Teodorczyk M, Sobczak G et al 2012 IEEE J. Quantum Electron. 48 465 | [18] | Liu Y, Qu H W, Zhao S Y, Zhou X Y, Wang Y F and Zheng W H 2017 Semicond. Sci. Technol. 32 01LT01 | [19] | Liu L, Qu H W, Liu Y, Wang Y F, Qi A Y, Guo X J, Zhao P C, Zhang Y J and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107 | [20] | Miah M J, Kettler T, Posilovic K, Kalosha P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105 | [21] | Miah M J, Kalosha V P, Bimberg D, Pohl J and Weyers M 2016 Opt. Express 24 30514 | [22] | Zhao S Y, Wang Y F, Qu H W, Liu Y, Zhou X Y, Liu A J and Zheng W H 2017 IEEE Photon. Technol. Lett. 29 2005 | [23] | Ma X L, Liu A J, Qu H W, Liu Y, Zhao P C, Guo X J and Zheng W H 2016 IEEE Photon. Technol. Lett. 28 2403 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|