Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 080301    DOI: 10.1088/0256-307X/36/8/080301
GENERAL |
Coherent Coupling between Microwave and Optical Fields via Cold Atoms
Zhen-Tao Liang1, Qing-Xian Lv1, Shan-Chao Zhang1, Wei-Tao Wu1, Yan-Xiong Du1**, Hui Yan1**, Shi-Liang Zhu2,1**
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006
2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
Cite this article:   
Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang et al  2019 Chin. Phys. Lett. 36 080301
Download: PDF(1314KB)   PDF(mobile)(1311KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a long-coherent-time coupling between microwave and optical fields through cold atomic ensembles. The phase information of the microwave field is stored in a coherent superposition state of a cold atomic ensemble and is then read out by two optical fields after 12 ms. A similar operation of mapping the phase of optical fields into a cold atomic ensemble and then retrieving by microwave is also demonstrated. These studies demonstrate that long-coherent-time cold atomic ensembles could resonantly couple with microwave and optical fields simultaneously, which paves the way for realizing high-efficiency, high-bandwidth, and noiseless atomic quantum converters.
Received: 12 April 2019      Published: 22 July 2019
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.25.Kb (Coherence)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301800 and 2016YFA0302800, the National Natural Science Foundation of China under Grant Nos 11822403, 91636218, U1801661, 11704131 and 61875060, the Natural Science Foundation of Guangdong Province under Grant Nos 2016A030310462 and 2015TQ01X715, the KPST of Guangzhou under Grant No 201804020055, and the SRFGS of SCNU.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/080301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen-Tao Liang
Qing-Xian Lv
Shan-Chao Zhang
Wei-Tao Wu
Yan-Xiong Du
Hui Yan
Shi-Liang Zhu
[1]Petrosyan D, Bensky G, Kurizki G, Mazets I, Majer J and Schmiedmayer J 2009 Phys. Rev. A 79 040304(R)
[2]Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302(R)
[3]Blum S, O'Brien C, Lauk N, Bushev P, Fleischhauer M and Morigi G 2015 Phys. Rev. A 91 033834
[4]Li B, Li P B, Zhou Y, Ma S L and Li F L 2017 Phys. Rev. A 96 032342
[5]Huo M X 2018 arXiv:1812.00360v1
[6]Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D and Nunn J 2016 New J. Phys. 18 093030
[7]Gard B T, Jacobs K, McDermott R and Saffman M 2017 Phys. Rev. A 96 013833
[8]Covey J P, Sipahigil A and Saffman M 2019 arXiv:1904.08999v1
[9]Petrosyan D, Mølmer K, Fortágh J and Saffman M 2019 arXiv:1904.09197v1
[10]Han J S, Vogt T, Gross C, Jaksch D, Kiffner M and Li W H 2018 Phys. Rev. Lett. 120 093201
[11]Vogt T, Gross C, Han J S, Pal S B, Lam M, Kiffner M and Li W H 2019 Phys. Rev. A 99 023832
[12]Adwaith K V, Karigowda A, Manwatkar C, Bretenaker F and Narayanan A 2019 Opt. Lett. 44 33
[13]Bernon S, Hattermann H, Bothner D, Knufinke M, Weiss P, Jessen F, Cano D, Kemmler M, Kleiner R, Koelle D and Fortágh J 2013 Nat. Commun. 4 2380
[14]Hattermann H, Bothner D, Ley L Y, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017 Nat. Commun. 8 2254
[15]Lekavicius I, Golter D A, Oo T and Wang H L 2017 Phys. Rev. Lett. 119 063601
[16]Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346
[17]Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H and Zhu S L 2019 Chin. Phys. Lett. 36 074202
[18]Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821
[19]Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
[20]Marino A M and Stroud C R 2008 Rev. Sci. Instrum. 79 013104
[21]Shahriar M S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 080301
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 080301
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 080301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 080301
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 080301
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 080301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 080301
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 080301
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 080301
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 080301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 080301
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 080301
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 080301
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 080301
Viewed
Full text


Abstract