GENERAL |
|
|
|
|
Coherent Coupling between Microwave and Optical Fields via Cold Atoms |
Zhen-Tao Liang1, Qing-Xian Lv1, Shan-Chao Zhang1, Wei-Tao Wu1, Yan-Xiong Du1**, Hui Yan1**, Shi-Liang Zhu2,1** |
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006 2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang et al 2019 Chin. Phys. Lett. 36 080301 |
|
|
Abstract We demonstrate a long-coherent-time coupling between microwave and optical fields through cold atomic ensembles. The phase information of the microwave field is stored in a coherent superposition state of a cold atomic ensemble and is then read out by two optical fields after 12 ms. A similar operation of mapping the phase of optical fields into a cold atomic ensemble and then retrieving by microwave is also demonstrated. These studies demonstrate that long-coherent-time cold atomic ensembles could resonantly couple with microwave and optical fields simultaneously, which paves the way for realizing high-efficiency, high-bandwidth, and noiseless atomic quantum converters.
|
|
Received: 12 April 2019
Published: 22 July 2019
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.25.Kb
|
(Coherence)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301800 and 2016YFA0302800, the National Natural Science Foundation of China under Grant Nos 11822403, 91636218, U1801661, 11704131 and 61875060, the Natural Science Foundation of Guangdong Province under Grant Nos 2016A030310462 and 2015TQ01X715, the KPST of Guangzhou under Grant No 201804020055, and the SRFGS of SCNU. |
|
|
[1] | Petrosyan D, Bensky G, Kurizki G, Mazets I, Majer J and Schmiedmayer J 2009 Phys. Rev. A 79 040304(R) | [2] | Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302(R) | [3] | Blum S, O'Brien C, Lauk N, Bushev P, Fleischhauer M and Morigi G 2015 Phys. Rev. A 91 033834 | [4] | Li B, Li P B, Zhou Y, Ma S L and Li F L 2017 Phys. Rev. A 96 032342 | [5] | Huo M X 2018 arXiv:1812.00360v1 | [6] | Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D and Nunn J 2016 New J. Phys. 18 093030 | [7] | Gard B T, Jacobs K, McDermott R and Saffman M 2017 Phys. Rev. A 96 013833 | [8] | Covey J P, Sipahigil A and Saffman M 2019 arXiv:1904.08999v1 | [9] | Petrosyan D, Mølmer K, Fortágh J and Saffman M 2019 arXiv:1904.09197v1 | [10] | Han J S, Vogt T, Gross C, Jaksch D, Kiffner M and Li W H 2018 Phys. Rev. Lett. 120 093201 | [11] | Vogt T, Gross C, Han J S, Pal S B, Lam M, Kiffner M and Li W H 2019 Phys. Rev. A 99 023832 | [12] | Adwaith K V, Karigowda A, Manwatkar C, Bretenaker F and Narayanan A 2019 Opt. Lett. 44 33 | [13] | Bernon S, Hattermann H, Bothner D, Knufinke M, Weiss P, Jessen F, Cano D, Kemmler M, Kleiner R, Koelle D and Fortágh J 2013 Nat. Commun. 4 2380 | [14] | Hattermann H, Bothner D, Ley L Y, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017 Nat. Commun. 8 2254 | [15] | Lekavicius I, Golter D A, Oo T and Wang H L 2017 Phys. Rev. Lett. 119 063601 | [16] | Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346 | [17] | Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H and Zhu S L 2019 Chin. Phys. Lett. 36 074202 | [18] | Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821 | [19] | Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479 | [20] | Marino A M and Stroud C R 2008 Rev. Sci. Instrum. 79 013104 | [21] | Shahriar M S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|