CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Contrasting Magnetism in Isovalent Layered LaSr$_{3}$NiRuO$_{4}$H$_{4}$ and LaSrNiRuO$_{4}$ due to Distinct Spin-Orbital States |
Xuan Wen1, Ke Yang1, Hua Wu1,2** |
1Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Xuan Wen, Ke Yang, Hua Wu 2019 Chin. Phys. Lett. 36 077501 |
|
|
Abstract The recently synthesized first $4d$ transition-metal oxide-hydride LaSr$_{3}$NiRuO$_{4}$H$_{4}$ with the unusual high H:O ratio surprisingly displays no magnetic order down to 1.8 K. This is in sharp contrast to the similar unusual low-valent Ni$^{+}$-Ru$^{2+}$ layered oxide LaSrNiRuO$_{4}$ which has a rather high ferromagnetic (FM) ordering Curie temperature $T_{\rm C}\sim 250$ K. Using density functional calculations with the aid of crystal field level diagrams and superexchange pictures, we find that the contrasting magnetism is due to the distinct spin-orbital states of the Ru$^{2+}$ ions (in addition to the common Ni$^{+}$ $S=1/2$ state but with a different orbital state): the Ru$^{2+}$ $S=0$ state in LaSr$_{3}$NiRuO$_{4}$H$_{4}$, but the Ru$^{2+}$ $S=1$ state in LaSrNiRuO$_{4}$. The Ru$^{2+}$ $S=0$ state has the $(xy)^2(xz,yz)^4$ occupation due to the RuH$_4$O$_2$ octahedral coordination, and then the nonmagnetic Ru$^{2+}$ ions dilute the $S=1/2$ Ni$^+$ sublattice which consequently has a very weak antiferromagnetic superexchange and thus accounts for the presence of no magnetic order down to 1.8 K in LaSr$_{3}$NiRuO$_{4}$H$_{4}$. In strong contrast, the Ru$^{2+}$ $S=1$ state in LaSrNiRuO$_{4}$ has the $(3z^2-r^2)^2(xz,yz)^3(xy)^1$ occupation due to the planar square RuO$_4$ coordination, and then the multi-orbital FM superexchange between the $S=1/2$ Ni$^+$ and $S=1$ Ru$^{2+}$ ions gives rise to the high $T_{\rm C}$ in LaSrNiRuO$_{4}$. This work highlights the importance of spin-orbital states in determining the distinct magnetism.
|
|
Received: 14 May 2019
Published: 20 June 2019
|
|
PACS: |
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
71.70.-d
|
(Level splitting and interactions)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674064 and 11474059, and the National Key Research and Development Program of China under Grant No 2016YFA0300700. |
|
|
[1] | Tokura Y and Nagaosa N 2000 Science 288 462 | [2] | Dagotto E 2005 Science 309 257 | [3] | Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103 | [4] | Ou X, Wang H, Fan F, Li Z and Wu H 2015 Phys. Rev. Lett. 115 257201 | [5] | Fan F, Li Z, Zhao Z, Yang K and Wu H 2016 Phys. Rev. B 94 214401 | [6] | Yajima T, Kitada A, Kobayashi Y, Sakaguchi T, Bouilly G, Kasahara S, Terashima T, Takano M and Kageyama H 2012 J. Am. Chem. Soc. 134 8782 | [7] | Hayward M A, Cussen E J, Claridge J B, Bieringer M, Rosseinsky M J, Kiely C J, Blundell S J, Marshall I M and Pratt F L 2002 Science 295 1882 | [8] | Denis R F, Leach A, Möller J S, Foronda F, Blundell S J and Hayward M A 2014 Angew. Chem. Int. Ed. 53 7556 | [9] | Tassel C, Goto Y, Kuno Y, Hester J, Green M, Kobayashi Y and Kageyama H 2014 Angew. Chem. Int. Ed. 53 10377 | [10] | Jin L, Lane M, Zeng D, Kirschner F K, Lang F, Manuel P, Blundell S J, McGrady J E and Hayward M A 2018 Angew. Chem. Int. Ed. 57 5025 | [11] | Patino M A, Zeng D, Bower R, McGrady J E and Hayward M A 2016 Inorg. Chem. 55 9012 | [12] | Zhu S, Fan F, Yang K and Wu H 2017 Europhys. Lett. 117 37005 | [13] | Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k package (http://www.wien2k.at) | [14] | Anisimov V I, Solovyev I V, Korotin M A, Czyżyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929 | [15] | Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 | [16] | Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982 | [17] | Tran F, Blaha P, Schwarz K and Novák P 2006 Phys. Rev. B 74 155108 | [18] | Wu H, Hu Z, Burnus T, Denlinger J D, Khalifah P G, Mandrus D G, Jang L Y , Hsieh H H, Tanaka A, Liang K S, Allen J W, Cava R J, Khomskii D I and Tjeng L H 2006 Phys. Rev. Lett. 96 256402 | [19] | Shannon R D 1976 Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32 751 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|