Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 077501    DOI: 10.1088/0256-307X/36/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Contrasting Magnetism in Isovalent Layered LaSr$_{3}$NiRuO$_{4}$H$_{4}$ and LaSrNiRuO$_{4}$ due to Distinct Spin-Orbital States
Xuan Wen1, Ke Yang1, Hua Wu1,2**
1Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Xuan Wen, Ke Yang, Hua Wu 2019 Chin. Phys. Lett. 36 077501
Download: PDF(980KB)   PDF(mobile)(975KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recently synthesized first $4d$ transition-metal oxide-hydride LaSr$_{3}$NiRuO$_{4}$H$_{4}$ with the unusual high H:O ratio surprisingly displays no magnetic order down to 1.8 K. This is in sharp contrast to the similar unusual low-valent Ni$^{+}$-Ru$^{2+}$ layered oxide LaSrNiRuO$_{4}$ which has a rather high ferromagnetic (FM) ordering Curie temperature $T_{\rm C}\sim 250$ K. Using density functional calculations with the aid of crystal field level diagrams and superexchange pictures, we find that the contrasting magnetism is due to the distinct spin-orbital states of the Ru$^{2+}$ ions (in addition to the common Ni$^{+}$ $S=1/2$ state but with a different orbital state): the Ru$^{2+}$ $S=0$ state in LaSr$_{3}$NiRuO$_{4}$H$_{4}$, but the Ru$^{2+}$ $S=1$ state in LaSrNiRuO$_{4}$. The Ru$^{2+}$ $S=0$ state has the $(xy)^2(xz,yz)^4$ occupation due to the RuH$_4$O$_2$ octahedral coordination, and then the nonmagnetic Ru$^{2+}$ ions dilute the $S=1/2$ Ni$^+$ sublattice which consequently has a very weak antiferromagnetic superexchange and thus accounts for the presence of no magnetic order down to 1.8 K in LaSr$_{3}$NiRuO$_{4}$H$_{4}$. In strong contrast, the Ru$^{2+}$ $S=1$ state in LaSrNiRuO$_{4}$ has the $(3z^2-r^2)^2(xz,yz)^3(xy)^1$ occupation due to the planar square RuO$_4$ coordination, and then the multi-orbital FM superexchange between the $S=1/2$ Ni$^+$ and $S=1$ Ru$^{2+}$ ions gives rise to the high $T_{\rm C}$ in LaSrNiRuO$_{4}$. This work highlights the importance of spin-orbital states in determining the distinct magnetism.
Received: 14 May 2019      Published: 20 June 2019
PACS:  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  71.70.-d (Level splitting and interactions)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674064 and 11474059, and the National Key Research and Development Program of China under Grant No 2016YFA0300700.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/077501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuan Wen
Ke Yang
Hua Wu
[1]Tokura Y and Nagaosa N 2000 Science 288 462
[2]Dagotto E 2005 Science 309 257
[3]Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[4]Ou X, Wang H, Fan F, Li Z and Wu H 2015 Phys. Rev. Lett. 115 257201
[5]Fan F, Li Z, Zhao Z, Yang K and Wu H 2016 Phys. Rev. B 94 214401
[6]Yajima T, Kitada A, Kobayashi Y, Sakaguchi T, Bouilly G, Kasahara S, Terashima T, Takano M and Kageyama H 2012 J. Am. Chem. Soc. 134 8782
[7]Hayward M A, Cussen E J, Claridge J B, Bieringer M, Rosseinsky M J, Kiely C J, Blundell S J, Marshall I M and Pratt F L 2002 Science 295 1882
[8]Denis R F, Leach A, Möller J S, Foronda F, Blundell S J and Hayward M A 2014 Angew. Chem. Int. Ed. 53 7556
[9]Tassel C, Goto Y, Kuno Y, Hester J, Green M, Kobayashi Y and Kageyama H 2014 Angew. Chem. Int. Ed. 53 10377
[10]Jin L, Lane M, Zeng D, Kirschner F K, Lang F, Manuel P, Blundell S J, McGrady J E and Hayward M A 2018 Angew. Chem. Int. Ed. 57 5025
[11]Patino M A, Zeng D, Bower R, McGrady J E and Hayward M A 2016 Inorg. Chem. 55 9012
[12]Zhu S, Fan F, Yang K and Wu H 2017 Europhys. Lett. 117 37005
[13]Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k package (http://www.wien2k.at)
[14]Anisimov V I, Solovyev I V, Korotin M A, Czyżyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[15]Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[16]Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
[17]Tran F, Blaha P, Schwarz K and Novák P 2006 Phys. Rev. B 74 155108
[18]Wu H, Hu Z, Burnus T, Denlinger J D, Khalifah P G, Mandrus D G, Jang L Y , Hsieh H H, Tanaka A, Liang K S, Allen J W, Cava R J, Khomskii D I and Tjeng L H 2006 Phys. Rev. Lett. 96 256402
[19]Shannon R D 1976 Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32 751
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 077501
[2] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 077501
[3] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 077501
[4] Chuan-Chuan Gu, Xu-Liang Chen, Chen Shen, Lang-Sheng Ling, Li Pi, Zhao-Rong Yang, Yu-Heng Zhang. Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr$_{2}$S$_{4}$[J]. Chin. Phys. Lett., 2016, 33(06): 077501
[5] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Orbital Dilution Effect on Structural and Magnetic Properties of FeMnXV2O4[J]. Chin. Phys. Lett., 2015, 32(02): 077501
Viewed
Full text


Abstract