CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field |
O. Ozturk1, E. Ozturk2**, S. Elagoz3 |
1Department of Nanotechnology Engineering, Cumhuriyet University, Sivas 58140, Turkey 2Department of Physics, Cumhuriyet University, Sivas 58140, Turkey 3ASELSAN-Microelectronics, Guidance & Electro-Optics, Ankara, Turkey
|
|
Cite this article: |
O. Ozturk, E. Ozturk, S. Elagoz 2019 Chin. Phys. Lett. 36 067801 |
|
|
Abstract For square-step quantum wells (SSQWs) and graded-step quantum wells (GSQWs), the nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG) coefficients under an intense laser field (ILF) are analyzed. The found results indicate that ILF can ensure a vital influence on the shape and height of the confined potential profile of both SSQWs and GSQWs, and alterations of the dipole moment matrix elements and the energy levels are adhered on the profile of the confined potential. According to the results, the potential profile and height of the GSQWs are affected more significantly by ILF intensity compared to SSQWs. These results indicate that NOR, SHG and THG coefficients of SSQWs and GSQWs may be calibrated in a preferred energy range and the magnitude of the resonance peak (RP) by tuning the ILF parameter. It is feasible to classify blue or red shifts in RP locations of NOR, SHG and THG coefficients by varying the ILF parameter. Our results can be useful in investigating new ways of manipulating the opto-electronic properties of semiconductor QW devices.
|
|
Received: 20 February 2019
Published: 18 May 2019
|
|
PACS: |
78.67.De
|
(Quantum wells)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
73.21.Fg
|
(Quantum wells)
|
|
|
|
|
[1] | Jiang X, Li S S and Tidrow M Z 1999 Physica E 5 27 | [2] | Leobandung E, Guo L and Chou S 1995 Appl. Phys. Lett. 67 2338 | [3] | Niculescu E, Radu A and Iorga A 2008 University Politehnica of Bucharest Sci. Bull. Ser. A 70 51 | [4] | Ozturk E 2015 Superlattices Microstruct. 82 303 | [5] | Phuc H V and Tung L V 2014 Superlattices Microstruct. 71 124 | [6] | Karabulut I 2010 Appl. Surf. Sci. 256 7570 | [7] | Ozturk E and Sokmen I 2012 Opt. Commun. 285 5223 | [8] | Niculescu E C and Eseanu N 2011 Eur. Phys. J. B 79 313 | [9] | Ozturk E 2010 Eur. Phys. J. B 75 197 | [10] | Fulco U L, Albuquerque E L, Mauriz P W and Vasconcelos M S 2013 Phys. Lett. A 377 582 | [11] | Unterrainer K, Heyman J N, Craig K, Galdrikian B, Sherwin M S, Campman K, Hopkins P F and Gossard A C 1996 Semicond. Sci. Technol. 11 1591 | [12] | Vodopyanov K L, Chazapisdag V, Phillipsdag C, Sungddag B and HarrisJr J S 1997 Semicond. Sci. Technol. 12 708 | [13] | Vodopyanov K L 2008 Laser Photon. Rev. 2 11 | [14] | Zavvari M, Abedi K, Yusefli A and Karimi M 2015 Optik 126 1861 | [15] | Zeiri N, Sfina N, Abdi-Ben Nasrallah S, Lazzari J L and Said M 2013 Infrared Phys. Technol. 60 137 | [16] | Bhattacharya P and Mi Z 2007 Proc. IEEE 95 1723 | [17] | Baskoutas S, Paspalakis E and Terzis A F 2007 J. Phys.: Condens. Matter 19 395024 | [18] | Karimi M J and Keshavarz A 2012 Physica E 44 1900 | [19] | Sakiroglu S, Ungan F, Yesilgul U, Mora-Ramos M E, Duque C A, Kasapoglu E, Sari H and Sokmen I 2012 Phys. Lett. A 376 1875 | [20] | Aytekin O, Turgut S and Tomak M 2012 Physica E 44 1612 | [21] | Xie W 2014 J. Lumin. 145 283 | [22] | Martinez-Orozco J C, Mora-Ramos M E and Duque C A 2012 J. Lumin. 132 449 | [23] | Liu X, Zou L, Liu C, Zhang Z H and Yuan J H 2016 Opt. Mater. 53 218 | [24] | Restrepo R L, Gonzalez-Pereira J P, Kasapoglu E, Morales A L and Duque C A 2018 Opt. Mater. 86 590 | [25] | Eseanu N, Niculescu E C and Burileanu L M 2009 Physica E 41 1386 | [26] | Ozturk E 2016 Opt. Quantum Electron. 48 269 | [27] | Lima F M S, Amato M A, Nunes O A C, Fonseca A L A, Enders B G and Silva Jr E F 2009 J. Appl. Phys. 105 123111 | [28] | Kuech T F, Babcock S E and Mawst L 2016 Appl. Phys. Rev. 3 040801 | [29] | Devenyi G A, Woo S Y, Ghanad-Tavakoli S, Hughes R A, Kleiman R N, Botton G A and Preston J S 2011 J. Appl. Phys. 110 124316 | [30] | Owen J H G, Barvosa-Carter W and Zinck J J 2000 Appl. Phys. Lett. 76 3070 | [31] | Mukai K, Sugawara M and Yamazaki S 1994 Phys. Rev. B 50 2273 | [32] | Yuh P F and Wang K L 1989 J. Appl. Phys. 65 4377 | [33] | Ozturk E 2015 Eur. Phys. J. Plus 130 237 | [34] | Zhao G J, Liang X X and Ban S L 2003 Phys. Lett. A 319 191 | [35] | Ozturk E and Sokmen I 2015 Int. J. Mod. Phys. B 29 1550030 | [36] | Ozturk E 2014 Opt. Commun. 332 136 | [37] | Peter A J and Navaneethakrishnan K 2008 Superlattices Microstruct. 43 63 | [38] | Ozturk E and Sokmen I 2013 J. Lumin. 134 42 | [39] | Pont M, Walet N R, Gavrila M and McCurdy C W 1988 Phys. Rev. Lett. 61 939 | [40] | Niculescu E C 2017 Opt. Mater. 64 540 | [41] | Zhang C 2001 Appl. Phys. Lett. 78 4187 | [42] | Ozturk E 2016 Laser Phys. 26 096102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|