FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene |
Binbin Liu1,2, Pujuan Ma1,2, Wenjing Yu1,2, Yadong Xu1,2**, Lei Gao1,2** |
1School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 2Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006
|
|
Cite this article: |
Binbin Liu, Pujuan Ma, Wenjing Yu et al 2019 Chin. Phys. Lett. 36 064202 |
|
|
Abstract We present a planar model system of a silica covered with a monolayer of nonlinear graphene to achieve a tunable Goos–Hänchen (GH) shift in the terahertz range. It is theoretically found that the transition between a negative shift and a large positive one can be realized by altering the intensity of incident light. Moreover, by controlling the chemical potential of graphene and the incident angle of light, we can further control the tunable GH shift dynamically. Numerical simulations for GH shifts based on Gaussian waves are in good agreement with our theoretical calculations.
|
|
Received: 03 March 2019
Published: 18 May 2019
|
|
PACS: |
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11774252, the Natural Science Foundation of Jiangsu Province under Grant No BK20161210, the Qing Lan project, the '333' project under Grant No BRA2015353, and the PAPD of Jiangsu Higher Education Institutions. |
|
|
[1] | Goos F and H?nchen H 1947 Ann. Phys. 436 333 | [2] | Goos F and H?nchen H 1958 Ann. Phys. 5 251 | [3] | Bretenaker F, Floch A L and Dutriaux L 1992 Phys. Rev. Lett. 68 931 | [4] | Emile O, Galstyan T, Le Floch A and Bretenaker F 1995 Phys. Rev. Lett. 75 1511 | [5] | Yu W J, Sun H and Gao L 2017 Sci. Rep. 7 45866 | [6] | Ma P J and Gao L 2017 Opt. Express 25 9676 | [7] | Madrazo A and Nieto-Veperinas M 1995 Opt. Lett. 20 2445 | [8] | Wang X, Yin C, Sun J, Li H, Wang Y, Ran M and Cao Z 2013 Opt. Express 21 13380 | [9] | Tonouchi M 2007 Nat. Photon. 1 97 | [10] | Zang M D, He T, Zhang B, Zhong L and Shen J 2016 Opt. Commun. 370 81 | [11] | Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 | [12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [13] | Cox J D and de Abajo F J G 2014 Nat. Commun. 5 5725 | [14] | Zhang K, Huang Y, Miroshnichenko A E and Gao L 2017 J. Phys. Chem. C 121 11804 | [15] | Peres N M R, Bludov Y V, Santos J E, Jauho A P and Vasilevskiy M I 2014 Phys. Rev. B 90 125425 | [16] | Merano M 2016 Opt. Lett. 41 187 | [17] | Hanson G W 2008 J. Appl. Phys. 103 064302 | [18] | Gan C H, Chu H S and Li E P 2012 Phys. Rev. B 85 125431 | [19] | Artmann K 1799 Ann. Phys. 2 87 | [20] | Yu B B, Deng X H, Yuan J and Liao Q H 2015 J. Mod. Opt. 62 1650 | [21] | Leung P T, Chen C W and Chiang H P 2007 Opt. Commun. 276 206 | [22] | Hou P, Chen Y Y, Chen X, Shi J L and Wang Q 2007 Phys. Rev. A 75 045802 | [23] | Li C F 2003 Phys. Rev. Lett. 91 133903 | [24] | Chen X and Li C F 2004 Phys. Rev. E 69 066617 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|