Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 063201    DOI: 10.1088/0256-307X/36/6/063201
ATOMIC AND MOLECULAR PHYSICS |
Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices
Meng Li1,2, Gui-zhong Zhang1**, Xin Ding1, Jian-quan Yao1
1College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
2Civil Aviation Meteorological Institute, Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China, Tianjin 300300
Cite this article:   
Meng Li, Gui-zhong Zhang, Xin Ding et al  2019 Chin. Phys. Lett. 36 063201
Download: PDF(1790KB)   PDF(mobile)(1794KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a crucial parameter for a few-cycle laser pulse, the carrier envelope phase (CEP) substantially determines the laser waveform. We propose a method to directly describe the CEP of an isolated attosecond pulse (IAP) by the vortex-shaped momentum pattern, which is generated from the tunneling ionization of a hydrogen atom by a pair of time-delayed, oppositely and circularly polarized IAP-IR pulses. Superior to the angular streaking method that characterizes the CEP in terms of only one streak, our method describes the CEP of an IAP by the features of multiple streaks in the vortex pattern. The proposed method may open the possibility of capturing sub-cycle extreme ultraviolet dynamics.
Received: 08 March 2019      Published: 18 May 2019
PACS:  32.80.-t (Photoionization and excitation)  
  33.20.-t (Molecular spectra)  
  42.25.Ja (Polarization)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674243 and 11674242
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/063201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/063201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Li
Gui-zhong Zhang
Xin Ding
Jian-quan Yao
[1]Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2]Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
[3]Lindner F, Sch?tzel M G, Walther H, Baltuska A, Goulielmakis E, Krausz F, Milosevic D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401
[4]Hentschel M, Kienberger R, Spielmann C Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[5]Baltu?ka A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, H?nsch T W and Krausz F 2003 Nature 421 611
[6]Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schr?der H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627
[7]Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M and Krausz F 2003 Phys. Rev. Lett. 91 253004
[8]Wittmann T, Horvath B, Helml W, Sch?tzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nat. Phys. 5 357
[9]Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S and Nisoli M 2006 Science 314 443
[10]Liu C D, Reduzzi M, Trabattoni A and Sunilkumar A 2013 Phys. Rev. Lett. 111 123901
[11]Ramsey N F 1950 Phys. Rev. 78 695
[12]Hasovic E, Becker W and Milosevi D B 2016 Opt. Express 24 6413
[13]Yuan K, Chelkowski S and Bandrauk A D 2016 Phys. Rev. A 93 053425
[14]Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
[15]Ngoko J M, Meremianin A V, Manakov N L, Hu S X, Madsen L B and Starace F 2017 Phys. Rev. A 96 013405
[16]Klaiber M, Danek J, Yakaboylu E, Hatsagortsyan K Z and Keitel C H 2017 Phys. Rev. A 95 023403
[17]Keldysh L V 1965 Sov. Phys. JETP 20 1307
[18]Li M, Zhang G Z, Kong X L, Wang T Q, Ding X and Yao J Q 2018 Opt. Express 26 878
[19]Li M, Zhang G Z, Ding X and Yao J Q 2018 IEEE Photon. J. 10 3300109
Related articles from Frontiers Journals
[1] Yankun Dou, Yiqi Fang, Peipei Ge, and Yunquan Liu. Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields[J]. Chin. Phys. Lett., 2023, 40(3): 063201
[2] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 063201
[3] Shuai Wang, Zhiyuan Zhu, Yizhu Zhang, Tian-Min Yan, and Yuhai Jiang. Rabi Oscillations and Coherence Dynamics in Terahertz Streaking-Assisted Photoelectron Spectrum[J]. Chin. Phys. Lett., 2021, 38(1): 063201
[4] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 063201
[5] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 063201
[6] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 063201
[7] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 063201
[8] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 063201
[9] Zhong-Hua Ji, Zhong-Hao Li, Ting Gong, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Rotational Population Measurement of Ultracold $^{85}$Rb$^{133}$Cs Molecules in the Lowest Vibrational Ground State[J]. Chin. Phys. Lett., 2017, 34(10): 063201
[10] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 063201
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 063201
[12] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(09): 063201
[13] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(08): 063201
[14] ZHU Chuan-Wen, TAO Zhi-Ming, CHEN Mo, LIU Zhong-Zheng, ZHANG Xiao-Gang, ZHANG Sheng-Nan, CHEN Jing-Biao. Population Distribution of Excited States in Cs Electrodeless Discharge Lamp[J]. Chin. Phys. Lett., 2015, 32(06): 063201
[15] LIAO Kai-Yu, YAN Hui, HE Jun-Yu, HUANG Wei, ZHANG Zhi-Ming, ZHU Shi-Liang. Experimental Generation of Narrow-Band Paired Photons: from Damped Rabi Oscillation to Group Delay[J]. Chin. Phys. Lett., 2014, 31(03): 063201
Viewed
Full text


Abstract