CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes |
Ting-Ting Wang1, Xiao Wang1**, Xiao-Bo Li2, Jin-Cheng Zhang1, Jin-Ping Ao1,2** |
1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 2Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
|
|
Cite this article: |
Ting-Ting Wang, Xiao Wang, Xiao-Bo Li et al 2019 Chin. Phys. Lett. 36 057101 |
|
|
Abstract The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175$^{\circ}\!$C, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with TiN anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.
|
|
Received: 21 January 2019
Published: 17 April 2019
|
|
PACS: |
71.55.Eq
|
(III-V semiconductors)
|
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.43.Jn
|
(Tunneling)
|
|
|
Fund: Supported by the National Key Research and Development Plan under Grant No 2017YFB0403000, and the Fundamental Research Funds for the Central Universities under Grant No JB181110. |
|
|
[1] | Hershtig R 2011 IEEE Microwave Mag. 12 64 | [2] | Hayashino K, Harauchi K, Iwasaki Y, Fukui K, Ao J P and Ohno Y 2012 Int. Microowave Workshop Ser. Innovative Wireless Power Transmission (Kyoto Japan 10–11 May 2012) p 179 | [3] | Takahashi K, Ao J P, Ikawa Y, Hu C Y, Kawai H, Shinohara N, Niwa N and Ohno Y J. Appl. Phys. 48 04C095 | [4] | Li L A, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y and Ao J P 2014 IEEE J. Electron Devices Soc. 2 168 | [5] | Sawada T, Ito Y, Kimura N, Imai K, Suzuki K and Sakai S 2002 Appl. Surf. Sci. 190 326 | [6] | Osvald J, Kuzmik J, Konstantinidis G, Lobotka P and Georgakilas A 2005 Microelectron. Eng. 81 181 | [7] | Yıldırım N, Ejderha K and Turut A 2010 J. Appl. Phys. 108 114506 | [8] | Pipinys P and Lapeika V 2006 J. Appl. Phys. 99 093709 | [9] | Ao J P, Naoi Y and Ohno Y 2013 Vacuum 87 150 | [10] | Li L A, Kishi A, Shiraishi T, Jiang Y, Wang Q and Ao J P 2014 J. Vac. Sci. Technol. A 32 02B116 | [11] | Sze S M 2007 Physics of Semiconductor Devices (New York: John Wiley &Sons) chap 3 p 156 | [12] | Mtangi W, van Rensburg P J J, Diale M, Auret F D, Nyamhere C, Nel J M and Chawanda A 2010 Mater. Sci. Eng. B 171 1 | [13] | Zhou Y, Wang D, Ahyi C, Tin C C, Williams J and Park M 2007 J. Appl. Phys. 101 024506 | [14] | Iucolano F, Roccaforte F, Giannazzo F and Raineri V 2007 J. Appl. Phys. 102 113701 | [15] | Saadaoui S, Salem M, Gassoumi M, Maaref H and Gaquière C 2011 J. Appl. Phys. 110 013701 | [16] | Kim H, Schuette M, Jung H, Song J, Lee J, Lu W and Mabon J C 2006 Appl. Phys. Lett. 89 053516 | [17] | Kawanago T, Kakushima K, Kataoka Y, Nishiyama A, Sugii N, Wakabayashi H, Tsutsui K, Natori K and Iwai H 2014 IEEE Trans. Electron Devices 61 785 | [18] | Pipinys P, Pipiniene A and Rimeika A 1999 J. Appl. Phys. 86 6875 | [19] | Tian H W, Zhang X Y and Bu Y Y 2018 ACS Sustainable Chem. Eng. 6 7346 | [20] | Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703 | [21] | Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535 | [22] | Turuvekere S, Karumuri N, Rahman A A, Bhattacharya A, DasGupta A and DasGupta N 2013 IEEE Trans. Electron Devices 60 3157 | [23] | Shiojima K, Suemitsu T and Ogura M 2001 Appl. Phys. Lett. 78 3636 | [24] | Kumar A, Vinayak S and Singh R 2011 J. Nano-Electron. Phys. 3 671 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|