Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 057101    DOI: 10.1088/0256-307X/36/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes
Ting-Ting Wang1, Xiao Wang1**, Xiao-Bo Li2, Jin-Cheng Zhang1, Jin-Ping Ao1,2**
1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
2Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
Cite this article:   
Ting-Ting Wang, Xiao Wang, Xiao-Bo Li et al  2019 Chin. Phys. Lett. 36 057101
Download: PDF(1093KB)   PDF(mobile)(1093KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175$^{\circ}\!$C, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with TiN anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.
Received: 21 January 2019      Published: 17 April 2019
PACS:  71.55.Eq (III-V semiconductors)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.43.Jn (Tunneling)  
Fund: Supported by the National Key Research and Development Plan under Grant No 2017YFB0403000, and the Fundamental Research Funds for the Central Universities under Grant No JB181110.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting-Ting Wang
Xiao Wang
Xiao-Bo Li
Jin-Cheng Zhang
Jin-Ping Ao
[1]Hershtig R 2011 IEEE Microwave Mag. 12 64
[2]Hayashino K, Harauchi K, Iwasaki Y, Fukui K, Ao J P and Ohno Y 2012 Int. Microowave Workshop Ser. Innovative Wireless Power Transmission (Kyoto Japan 10–11 May 2012) p 179
[3]Takahashi K, Ao J P, Ikawa Y, Hu C Y, Kawai H, Shinohara N, Niwa N and Ohno Y J. Appl. Phys. 48 04C095
[4]Li L A, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y and Ao J P 2014 IEEE J. Electron Devices Soc. 2 168
[5]Sawada T, Ito Y, Kimura N, Imai K, Suzuki K and Sakai S 2002 Appl. Surf. Sci. 190 326
[6]Osvald J, Kuzmik J, Konstantinidis G, Lobotka P and Georgakilas A 2005 Microelectron. Eng. 81 181
[7]Yıldırım N, Ejderha K and Turut A 2010 J. Appl. Phys. 108 114506
[8]Pipinys P and Lapeika V 2006 J. Appl. Phys. 99 093709
[9]Ao J P, Naoi Y and Ohno Y 2013 Vacuum 87 150
[10]Li L A, Kishi A, Shiraishi T, Jiang Y, Wang Q and Ao J P 2014 J. Vac. Sci. Technol. A 32 02B116
[11]Sze S M 2007 Physics of Semiconductor Devices (New York: John Wiley &Sons) chap 3 p 156
[12]Mtangi W, van Rensburg P J J, Diale M, Auret F D, Nyamhere C, Nel J M and Chawanda A 2010 Mater. Sci. Eng. B 171 1
[13]Zhou Y, Wang D, Ahyi C, Tin C C, Williams J and Park M 2007 J. Appl. Phys. 101 024506
[14]Iucolano F, Roccaforte F, Giannazzo F and Raineri V 2007 J. Appl. Phys. 102 113701
[15]Saadaoui S, Salem M, Gassoumi M, Maaref H and Gaquière C 2011 J. Appl. Phys. 110 013701
[16]Kim H, Schuette M, Jung H, Song J, Lee J, Lu W and Mabon J C 2006 Appl. Phys. Lett. 89 053516
[17]Kawanago T, Kakushima K, Kataoka Y, Nishiyama A, Sugii N, Wakabayashi H, Tsutsui K, Natori K and Iwai H 2014 IEEE Trans. Electron Devices 61 785
[18]Pipinys P, Pipiniene A and Rimeika A 1999 J. Appl. Phys. 86 6875
[19]Tian H W, Zhang X Y and Bu Y Y 2018 ACS Sustainable Chem. Eng. 6 7346
[20]Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[21]Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
[22]Turuvekere S, Karumuri N, Rahman A A, Bhattacharya A, DasGupta A and DasGupta N 2013 IEEE Trans. Electron Devices 60 3157
[23]Shiojima K, Suemitsu T and Ogura M 2001 Appl. Phys. Lett. 78 3636
[24]Kumar A, Vinayak S and Singh R 2011 J. Nano-Electron. Phys. 3 671
Related articles from Frontiers Journals
[1] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 057101
[2] Jin Xu, Wei Zhang, Meng Peng, Jiang-Nan Dai, Chang-Qing Chen. Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode[J]. Chin. Phys. Lett., 2017, 34(7): 057101
[3] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 057101
[4] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 057101
[5] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 057101
[6] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 057101
[7] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 057101
[8] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 057101
[9] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 057101
[10] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 057101
[11] KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan, QIAO Li-Jun, LIU Hong-Gang, WANG Wei, PAN Jiao-Qing. High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD[J]. Chin. Phys. Lett., 2015, 32(03): 057101
[12] ZHOU Xu-Liang, PAN Jiao-Qing, YU Hong-Yan, LI Shi-Yan, WANG Bao-Jun, BIAN Jing, WANG Wei. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 057101
[13] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 057101
[14] ZHANG Jian-Li, LIU Jun-Lin, PU Yong, FANG Wen-Qing, ZHANG Meng, JIANG Feng-Yi. Effects of Carrier Gas on Carbon Incorporation in GaN[J]. Chin. Phys. Lett., 2014, 31(03): 057101
[15] HUANG Duo-Hui, YANG Jun-Sheng, CAO Qi-Long, WAN Ming-Jie, LI Qiang, SUN Liang, WANG Fan-Hou. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(03): 057101
Viewed
Full text


Abstract