2011, Vol. 28(9): 90202-090202    DOI: 10.1088/0256-307X/28/9/090202
Coupled Nonlinear Schrödinger Equations and the Miura Transformation
LOU Yan1, ZHU Jun-Yi2**
1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450052
2Department of Mathematics, Zhengzhou University, Zhengzhou 450052
收稿日期 2011-03-30  修回日期 1900-01-01
Supporting info
[1] Zakharov V E and Shabat A B 1974 Funct. Anal. Appl. 8 226
[2] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[3] Yan Z 1987 Chin. Phys. Lett. 4 185
[4] Hasimoto H and Ono H 1972 J. Phys. Soc. Jpn. 33 805
[5] Yuen H C, Ferguson W E 1978 Phys. Fluids 21 1275
[6] Ablowitz M J and Segur H 1979 J. Fluid Mech. 92 691
[7] Hasegawa A and Kodama Y 1981 Proc. IEEE 69 1145
[8] Zakharov V E 1972 Sov. Phys. JETP 35 908
[9] Nicholson D R and Goldman M V 1978 Phys. Rev. Lett. 41 406
[10] Jackiw R 1977 Rev. Mod. Phys. 49 681
[11] Davydov A S 1981 Physica D 3 1
[12] Hyman J M et al 1981 physica D 3 23
[13] Rajaraman R 1982 Soliton and Instantons (Amsterdam: North-Holland)
[14] Zhu J Y and Geng X G 2006 J. Nonlinear Math. Phys. 13 81
[15] Dai H H and Jeffrey A 1989 Phys. Lett. A 139 369
[16] Su T, Wang Z W 2010 Chin. Phys. Lett. 27 090203
[17] Zakharov V E and Takhtajan L A 1979 Theor. Mater. Fiz. 38 26
[18] Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations: Geometry and Mordern Applications in Soliton heory (Cambridge: Cambridge University)