2011, Vol. 28(9): 90202-090202 DOI: 10.1088/0256-307X/28/9/090202 | ||
Coupled Nonlinear Schrödinger Equations and the Miura Transformation | ||
LOU Yan1, ZHU Jun-Yi2** | ||
1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450052 2Department of Mathematics, Zhengzhou University, Zhengzhou 450052 |
||
收稿日期 2011-03-30 修回日期 1900-01-01 | ||
Supporting info | ||
[1] Zakharov V E and Shabat A B 1974 Funct. Anal. Appl. 8 226 [2] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249 [3] Yan Z 1987 Chin. Phys. Lett. 4 185 [4] Hasimoto H and Ono H 1972 J. Phys. Soc. Jpn. 33 805 [5] Yuen H C, Ferguson W E 1978 Phys. Fluids 21 1275 [6] Ablowitz M J and Segur H 1979 J. Fluid Mech. 92 691 [7] Hasegawa A and Kodama Y 1981 Proc. IEEE 69 1145 [8] Zakharov V E 1972 Sov. Phys. JETP 35 908 [9] Nicholson D R and Goldman M V 1978 Phys. Rev. Lett. 41 406 [10] Jackiw R 1977 Rev. Mod. Phys. 49 681 [11] Davydov A S 1981 Physica D 3 1 [12] Hyman J M et al 1981 physica D 3 23 [13] Rajaraman R 1982 Soliton and Instantons (Amsterdam: North-Holland) [14] Zhu J Y and Geng X G 2006 J. Nonlinear Math. Phys. 13 81 [15] Dai H H and Jeffrey A 1989 Phys. Lett. A 139 369 [16] Su T, Wang Z W 2010 Chin. Phys. Lett. 27 090203 [17] Zakharov V E and Takhtajan L A 1979 Theor. Mater. Fiz. 38 26 [18] Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations: Geometry and Mordern Applications in Soliton heory (Cambridge: Cambridge University) |
||