2011, Vol. 28(6): 60202-060202 DOI: 10.1088/0256-307X/28/6/060202 | ||
N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation | ||
CHEN Shou-Ting1**, ZHU Xiao-Ming1, LI Qi2, CHEN Deng-Yuan1 | ||
1Department of Mathematics, Shanghai University, Shanghai 200444 2College of Mathematics and Information Science, East China Institute of Technology, Jiangxi 310018 |
||
收稿日期 2011-03-19 修回日期 1900-01-01 | ||
Supporting info | ||
[1] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598 [2] Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011 [3] Zhang D J and Chen D Y 2002 Chaos, Solitons & Fractals 14 573 [4] Gesztesy F et al 2008 Stud. Appl. Math. 120 361 [5] Zhang D J and Chen D Y 2002 J. Phys. A: Math. Gen. 35 7225 [6] Zeng Y B et al 1995 J. Phys. A: Math. Gen. 28 113 [7] Geng X G et al 2007 Stud. Appl. Math. 118 281 [8] Geng X G et al 2007 J. Math. Anal. Appl. 327 829 [9] Tamizhmani K M and Ma W X 2000 J. Phys. Soc. Jpn. 69 351 [10] Zhang D J et al 2006 Phys. Lett. A 359 458 [11] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 393 [12] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 419 [13] Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge: Cambridge University) [14] Geng X G 1989 Acta Math. Sci. 9 21 [15] Li Q 2011 Double Casoratian solutions of the Ablowitz–Ladik equation (in preparation) [16] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1 [17] Gegenhasi et al 2006 Inverse Problems 22 1677 [18] Wu H and Zhang D J 2003 J Phys A: Gen Math. 36 4867 |
||