2008, Vol. 25(11): 3844-3847    DOI:
Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
收稿日期 2008-06-27  修回日期 1900-01-01
Supporting info

[1] Ablowitz M J and Clarkson P A 1991 Soliton,
Nonlinear Evolution Equations and Inverse Scattering (Cambridge:
Cambridge University Press)

[2] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63
377

[3] Hirota R 2004 The Direct Method in Soliton Theory
(Cambridge: Cambridge University Press)

[4] Rogers C and Schief W K 2002 B$\ddot{a$cklund and
Darboux transformations Geometry and Modern Application in Soliton
Theroy (Cambridge: Cambridge University Press)

[5] Matveev V B and Salle M A 1991 Darboux transformation
and Solitons (Berlin: Springer)

[6] Levi D, Neugebaurer G and Meinel R 1984 Phys.
Lett. A 102 1

[7] Gu C H, Hu H S and Zhou Z X 2005 Darboux
Transformation in Soliton Theory and Its Geometric Applications
(Shanghai: Shanghai Science and Technology Publishing House) (in
Chinese)

[8] Li Y S and Zhang J E 2001 Phys. Lett. A 284
253

[9] Lou S Y and Li Y S 2006 Chin. Phys. Lett. 23
2633


[10] Zhou Z X 1998 J. Math. Phys. 39 986

[11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn.
68 1508

[12] Fan E G 2002 Commun. Theor. Phys. 37 145

[13] Zhou Z J and Li Z B 2003 Commun. Theor. Phys.
39 257

[14] Chen A H and Li X M 2007 Phys. Lett. A 370
281

[15] Yan Z Y and Zhang H Q 2002 Chaos, Solitons and
Fractals 13 1439


[16] Yan Z Y 2002 Chaos, Solitons and Fractals 14
441

[17] Luo L 2007 J. Phys. A: Math. Theor. 40 4169

[18] Ma W X and Zhou R G 1999 J. Phys. A: Math. Gen.
32 L239