2009, Vol. 26(5): 50203-050203    DOI: 10.1088/0256-307X/26/5/050203
Quasi-Hamiltonian Structure Associated with an Integrable Coupling System
LUO Lin1, FAN En-Gui2
1Department of Mathematics, Shanghai Second Polytechnic University, Shanghai 2012092School of Mathematical Sciences, Fudan University, Shanghai 200433
收稿日期 2009-01-22  修回日期 1900-01-01
Supporting info

[1] Ablowitz M R and Segur H 1981 Soliton and the Inverse
Scattering Transformation (Philadelphia, PA: SIAM)

[2] Kaup D J and Newell A C 1978 J. Math. Phys. 19
798

[3] Qiao Z J 1993 J. Math. Phys. 34 3110

[4] Zeng Y B 1994 Physica D 73 171

[5] Zhou Z X 2002 J. Math. Phys. 43 5002

[6] Cao C W, Geng X G and Wang H Y 2002 J. Math. Phys.
43 621

[7] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen.
37 1323.

[8] Fan E G and Zhang H Q 2000 J. Math. Phys. 41
2058

[9] Ma W X and Chen M 2006 J. Phys. A 39 10787

[10] Zhang Y F and Fan E G 2007 Phys. Lett. A 365
89

[11] Xu X X, Yang H X and Sun Y P 2006 Modern Phys.
Lett. B 20 1

[12] Zhou R G 2007 J. Math. Phys. 48 013510

[13] Ma W X and Xu X X and Zhang Y F 2006 Phys. Lett. A
351 125

[14] Guo F K and Zhang Y F 2006 Commun. Theor. Phys.
45 799

[15] Ma W Xand Zhang Y F 2006 J. Math. Phys. 47
053501

[16]Fan E G and Zhang Y F 2005 Chaos Solitons Fractals
25 425

[17] Xia T C and Fan E G 2005 J. Math. Phys. 46
043510

[18]Luo L and Fan E G 2008 Nonlinear Anal. 69 3450

[19]Luo L, Ma W X and Fan E G 2008 Internat. J. Modern
Phys. A 23 1309