2009, Vol. 26(5): 50203-050203 DOI: 10.1088/0256-307X/26/5/050203 | ||
Quasi-Hamiltonian Structure Associated with an Integrable Coupling System | ||
LUO Lin1, FAN En-Gui2 | ||
1Department of Mathematics, Shanghai Second Polytechnic University, Shanghai 2012092School of Mathematical Sciences, Fudan University, Shanghai 200433 | ||
收稿日期 2009-01-22 修回日期 1900-01-01 | ||
Supporting info | ||
[1] Ablowitz M R and Segur H 1981 Soliton and the Inverse [2] Kaup D J and Newell A C 1978 J. Math. Phys. 19 [3] Qiao Z J 1993 J. Math. Phys. 34 3110 [4] Zeng Y B 1994 Physica D 73 171 [5] Zhou Z X 2002 J. Math. Phys. 43 5002 [6] Cao C W, Geng X G and Wang H Y 2002 J. Math. Phys. [7] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen. [8] Fan E G and Zhang H Q 2000 J. Math. Phys. 41 [9] Ma W X and Chen M 2006 J. Phys. A 39 10787 [10] Zhang Y F and Fan E G 2007 Phys. Lett. A 365 [11] Xu X X, Yang H X and Sun Y P 2006 Modern Phys. [12] Zhou R G 2007 J. Math. Phys. 48 013510 [13] Ma W X and Xu X X and Zhang Y F 2006 Phys. Lett. A [14] Guo F K and Zhang Y F 2006 Commun. Theor. Phys. [15] Ma W Xand Zhang Y F 2006 J. Math. Phys. 47 [16]Fan E G and Zhang Y F 2005 Chaos Solitons Fractals [17] Xia T C and Fan E G 2005 J. Math. Phys. 46 [18]Luo L and Fan E G 2008 Nonlinear Anal. 69 3450 [19]Luo L, Ma W X and Fan E G 2008 Internat. J. Modern |
||