2009, Vol. 26(10): 100201-100201 DOI: 10.1088/0256-307X/26/10/100201 | ||
Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping | ||
ZHAO Yuan1, ZHANG Shun-Li1,3, LOU Sen-Yue2,3 | ||
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi'an 7100692Department of Physics, Shanghai Jiao Tong University, Shanghai 2002403Department of Physics, Ningbo University, Ningbo 315211 | ||
收稿日期 2009-06-02 修回日期 1900-01-01 | ||
Supporting info | ||
[1] Cole J D 1968 Perturbation Methods in Applied [2] Van Dyke M 1975 Perturbation Methods in Fluid [3] Nayfeh A H 2000 Perturbation Methods (New York: [4] Baikov V A, Gazizov R K and Ibragimov N H 1988 Mat. [5] Fushchich W I and Shtelen W M 1989 J. Phys. A: Math. [6] Pakdemirli M, Yurusoy M and Dolapci I T 2004 Acta [7] Wiltshire R 2006 J. Comput. Appl. Math. 197 [8] Clarkson P A and Kruskal M D 1989 J. Math. Phys. [9] Lou S Y 1990 Phys. Lett. A 151 133 [10] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) Bluman G W and Kumei S 1989 Symmetries and Differential Ibragimov Kh N 1985 Transformation Groups Applied to [11] Jiao X Y, Yao R X and Lou S Y 2008 J. Math. Phys. [12] Jiao X Y, Yao R X, Zhang S L and Lou S Y 2008 arXiv: [13] Jia M, Wang J Y and Lou S Y 2009 Chin. Phys. Lett. [14] Jiao X Y, Yao R X and Lou S Y 2009 Chin. Phys. [15] Ahmad F, Kara A H, Bokhari A H and Zaman F D 2008 |
||