2008, Vol. 25(1): 8-11    DOI:
Darboux Transformation and Multi-Solitons for Complex mKdV Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
收稿日期 2007-10-04  修回日期 1900-01-01
Supporting info

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear
Evolution Equations and Inverse Scattering (Cambridge: Cambridge
University Press) chap 2 p 70

[2] Gu C H, Guo B L, Li Y S, Cao C W, Tian C, Tu G Z, Hu H S, Guo
B Y and Ge M L 1990 Soliton Theory and Its Application (Hangzhou:
Zhejiang Publishing House of Science and Technology) chap 3 p 141

[3] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformation
in Soliton Theory and Its Geometric Applications (Shanghai: Science and
Technology) chap 1 p1

[4] Hirota R 2004 The Direct Method in Soliton Theory
(Cambridge: Cambridge University Press) chap 1 p 19

[5] Chen D Y 2006 The Introduction of Soliton (Beijing:
Science Press) chap 5 p 101

[6] Neugebauer G, Meinel R 1984 Phys. Lett. A 100 467

[7] Levi D, Neugebauer G, Meinel R 1984 Phys. Lett. A
102 1

[8] Li Y S, Ma W X and Zhang J E 2000 Phys. Lett. A
275 60

[9] Li Y S and Zhang J E 2001 Phys. Lett. A 284 258

[10] Li Y S, Zhang J E 2003 Chaos, Solitons and Fractals
16 271

[11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68
1508

[12] Zhou Z J and Li Z B 2003 Commun. Theor. Phys.
39 257

[13] Zhou Z J and Li Z B 2003 Acta Phys. Sin. 52
262 (in Chinese)

[14] Chen A H and Li X M 2006 Chaos, Solitons and Fractals
27 43

[15] Li X M and Chen A H 2005 Phys. Lett. A 342 413

[16] Fan E G 2000 J. Phys. A: Math. Gen. 33 6925

[17] Fan E G 2001 Commun. Theor. Phys. 36 401

[18] Lou S Y 2000 Phys. Lett. A 277 94

[19] Marchant T R 2007 Chaos, Solitons and Fractals 32
1328