2007, Vol. 24(10): 2756-2758    DOI:
Experimental Confirmation of a Modified Lorenz System
LIU Ling, LIU Chong-Xin, ZHANG Yan-Bin
1Institute of Electrical Engineering, Xi'an Jiaotong University, Xi'an 7100492State Key Laboratory of Electrical Insulation and Power Equipment, Xi'anJiaotong University, Xi'an 710049
收稿日期 2007-05-03  修回日期 1900-01-01
Supporting info

[1] Lorenz E N 1963 J. Atmosph. Sci. 20 130

[2] Lorenz E N 1993 The Essence of Chaos (Seattle, WA:
University of Washington Press) p 148

[3] Stewart I 2002 Nature 406 948

[4] Leonov G, Bunin A and Koksch N 1987 Zeitschrift fur
Angewandte Mathematik und Mechanik 67 649

[5]Robinson R C 2004 An introduction to Dynamical Systems:
Continuous and Discrete (New York: Prentice-Hall) p 256

[6] R"ossler O E 1976 Phys Lett A 57 397

[7] Chen G and Dong X 1998 From Chaos to Order: Methodologies,
Perspectives and Applications (Singapore: World Scientific)

[8] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465

[9] L"u J and Chen G 2002 Int. J. Bifur. Chaos. 12 659

[10] L"u J, Chen G, Cheng D Z and Celikovsky S 2002 Int. J.
Bifur. Chaos 12 2917

[11] L"u J, Chen G and Cheng D Z 2004 Int. J. Bifur. Chaos
14 1507

[12] L"u J, Chen G and Zhang S 2002 Chaos, Solitons
Fractals 14 669

[13] L"u J, Chen G and Zhang S 2002 Int. J. Bifur. Chaos
12 1001

[14] Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons Fractals
22 1031

[15] Chua L O, Wu C W, Huang A and Zhong G Q 1993 IEEE IEEE
Trans. Circuits Systems I 40 722

[16] Liu L, Su Y C and Liu X 2006 Int. J. Nonlin. Sci. Numerical
Simulation 7 187

[17] L"u J, Chen G and Yu Y G 2002 Chin. Phys. Lett. 19
1260