2007, Vol. 24(10): 2773-2776    DOI:
Lie Symmetries and Conserved Quantities for Super-Long Elastic Slender Rod
ZHAO Wei-Jia1, WENG Yu-Quan1, FU Jing-Li2,3
1Department of Mathematics, Qingdao University, Qingdao 2660712Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 3100183Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
收稿日期 2007-05-25  修回日期 1900-01-01
Supporting info

[1] Liu Y Z 2006 The Non-Linear Mechanics of Elastic Rod: Basic
Theory of DNA Mechanic Model (Beijing: Qinghua University Press) (in
Chinese)

[2] Yaoming S and John E H 1994 J. Chem. Phys. 101 5186

[3] Smith S B, Finci L and Bustamante C 1992 Science 258
1122

[4] Bustamante C and Bryant Z 2003 Nature 421 423

[5] Ovsiannikov L V 1982 Group Analysis of Differential Equations
(New York: Academic)

[6] Olver P T 1986 Applications of Lie Groups to Differential
Equations (Berlin: Springer)

[7] Bluman G W and Kumei S 1989 Symmetries and Differential
Equations (Berlin: Springer)

[8] Ibragimov N H 1985 Transformation Groups Applied to
Mathematical Physics (Boston: Reidel)

[9] Hydon, P 1999 Symmetry Methods for Ordinary Differential
Equations (Cambridge: Cambridge University Press)

[10] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551

[11] Lutzky M 1979 J. Phys. A 12 973

[12] Liu C S 2004 Int. J. Solids and Structure 41 1823

[13] Lafortune S, Winternitz P and Martina L 2000 J. Phys. A
33 2419

[14] Gaetano V and Patrizia V 2002 Class. Quantum Grav.
19 3333

[15] Lakshmanna M and Sahadevan R 1991 J. Math. Phys. 32 71

[16] Cicogna G and Gaeta G 1992 J. Phys. A 25 1535

[17] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255