摘要点击排行
一年内发表的文章
|
两年内
|
三年内
|
全部
Please wait a minute...
选择:
合并摘要
下载引用
EndNote
Reference Manager
ProCite
BibTeX
RefWorks
显示/隐藏图片
Select
1.
Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms
Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su
中国物理快报 2022, 39 (
9
): 90301-. DOI: 10.1088/0256-307X/39/9/090301
摘要
HTML
PDF
(3350KB)
We achieve the robust nonadiabatic holonomic two-qubit controlled gate in one step based on the ground-state blockade mechanism between two Rydberg atoms. By using the Rydberg-blockade effect and the Raman transition mechanism, we can produce the blockade effect of double occupation of the corresponding ground state, i.e., ground-state blockade, to encode the computational subspace into the ground state, thus effectively avoiding the spontaneous emission of the excited Rydberg state. On the other hand, the feature of geometric quantum computation independent of the evolutionary details makes the scheme robust to control errors. In this way, the controlled quantum gate constructed by our scheme not only greatly reduces the gate infidelity caused by spontaneous emission but is also robust to control errors.
参考文献
|
相关文章
|
多维度评价
Select
2.
Unitary Scattering Protected by Pseudo-Hermiticity
L. Jin
中国物理快报 2022, 39 (
3
): 37302-037302. DOI: 10.1088/0256-307X/39/3/037302
摘要
HTML
PDF
(725KB)
Hermitian systems possess unitary scattering. However, the Hermiticity is unnecessary for a unitary scattering although the scattering under the influence of non-Hermiticity is mostly non-unitary. Here we prove that the unitary scattering is protected by certain type of pseudo-Hermiticity and unaffected by the degree of non-Hermiticity. The energy conservation is violated in the scattering process and recovers after scattering. The subsystem of the pseudo-Hermitian scattering center including only the connection sites is Hermitian. These findings provide fundamental insights on the unitary scattering, pseudo-Hermiticity, and energy conservation, and are promising for light propagation, mesoscopic electron transport, and quantum interference in non-Hermitian systems.
参考文献
|
相关文章
|
多维度评价
Select
3.
Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization
Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao
中国物理快报 2022, 39 (
3
): 37303-037303. DOI: 10.1088/0256-307X/39/3/037303
摘要
HTML
PDF
(1732KB)
The reversal of perpendicular magnetization (PM) by electric control is crucial for high-density integration of low-power magnetic random-access memory. Although the spin-transfer torque and spin-orbit torque technologies have been used to switch the magnetization of a free layer with perpendicular magnetic anisotropy, the former has limited endurance because of the high current density directly through the junction, while the latter requires an external magnetic field or unconventional configuration to break the symmetry. Here we propose and realize the orbit-transfer torque (OTT), that is, exerting torque on the magnetization using the orbital magnetic moments, and thus demonstrate a new strategy for current-driven PM reversal without external magnetic field. The perpendicular polarization of orbital magnetic moments is generated by a direct current in a few-layer WTe$_{2}$ due to the existence of nonzero Berry curvature dipole, and the polarization direction can be switched by changing the current polarity. Guided by this principle, we construct the WTe$_{2}$/Fe$_{3}$GeTe$_{2}$ heterostructures to achieve the OTT driven field-free deterministic switching of PM.
参考文献
|
相关文章
|
多维度评价
Select
4.
In Situ
Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao
中国物理快报 2022, 39 (
5
): 58101-058101. DOI: 10.1088/0256-307X/39/5/058101
摘要
HTML
PDF
(7316KB)
We demonstrate the
in situ
growth of ultra-thin InAs nanowires with an epitaxial Al film by molecular-beam epitaxy. Our InAs nanowire diameter ($\sim $30 nm) is much thinner than before ($\sim $100 nm). The ultra-thin InAs nanowires are pure phase crystals for various different growth directions. Transmission electron microscopy confirms an atomically abrupt and uniform interface between the Al shell and the InAs wire. Quantum transport study on these devices resolves a hard induced superconducting gap and 2$e$-periodic Coulomb blockade at zero magnetic field, a necessary step for future Majorana experiments. By reducing wire diameter, our work presents a promising route for reaching fewer sub-band regime in Majorana nanowire devices.
参考文献
|
相关文章
|
多维度评价
Select
5.
Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors
Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu
中国物理快报 2022, 39 (
9
): 97401-. DOI: 10.1088/0256-307X/39/9/097401
摘要
HTML
PDF
(11283KB)
We predict that the square lattice layer formed by [Co$_2$N$_2$]$^{2-}$ diamond-like units can host high-temperature superconductivity. The layer appears in the stable ternary cobalt nitride, BaCo$_2$N$_2$. The electronic physics of the material stems from Co$_2$N$_2$ layers where the dimerized Co pairs form a square lattice. The low energy physics near Fermi energy can be described by an effective two-orbital model. Without considering interlayer couplings, the two orbitals are effectively decoupled. This electronic structure satisfies the “gene” character proposed for unconventional high-temperature superconductors. We predict that the leading superconducting pairing instability is driven from an extended $s$-wave ($s^\pm$) to a $d$-wave by hole doping, e.g., in Ba$_{1-x}$K$_x$Co$_2$N$_2$. This study provides a new platform to establish the superconducting mechanism of unconventional high-temperature superconductivity.
参考文献
|
相关文章
|
多维度评价
Select
6.
Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang
中国物理快报 2022, 39 (
12
): 128501-128501. DOI: 10.1088/0256-307X/39/12/128501
摘要
HTML
PDF
(4671KB)
A magnetic tunnel junction (MTJ) is the core component in memory technologies, such as the magnetic random-access memory, magnetic sensors and programmable logic devices. In particular, MTJs based on two-dimensional van der Waals (vdW) heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices. However, their operation at room temperature remains a challenge. Here, we report a large tunnel magnetoresistance (TMR) of up to 85% at room temperature ($T = 300$ K) in vdW MTJs based on a thin ($ < 10$ nm) semiconductor spacer WSe$_{2}$ layer embedded between two Fe$_{3}$GaTe$_{2}$ electrodes with intrinsic above-room-temperature ferromagnetism. The TMR in the MTJ increases with decreasing temperature up to 164% at $T = 10$ K. The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.
参考文献
|
相关文章
|
多维度评价
Select
7.
Quantum Cloning of Steering
Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen
中国物理快报 2022, 39 (
7
): 70302-. DOI: 10.1088/0256-307X/39/7/070302
摘要
HTML
PDF
(446KB)
Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot be perfectly cloned by any joint operation between a steered subsystem and a third system. Perfect cloning is viable if and only if the initial state is of zero discord. We also investigate the process of cloning the steered qubit of a Bell state using a universal cloning machine. Einstein–Podolsky–Rosen (EPR) steering, which is a type of quantum correlation existing in the states without a local-hidden-state model, is observed in the two copy subsystems. This contradicts the conclusion of
no-cloning of quantum steering (EPR steering)
[
C. Y. Chiu
et al.
, npj Quantum Inf.
2
, 16020 (2016)
] based on a mutual information criterion for EPR steering.
参考文献
|
相关文章
|
多维度评价
Select
8.
Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits
Shibo Xu, Zheng-Zhi Sun, Ke Wang, Liang Xiang, Zehang Bao, Zitian Zhu, Fanhao Shen, Zixuan Song, Pengfei Zhang, Wenhui Ren, Xu Zhang, Hang Dong, Jinfeng Deng, Jiachen Chen, Yaozu Wu, Ziqi Tan, Yu Gao, Feitong Jin, Xuhao Zhu, Chuanyu Zhang, Ning Wang, Yiren Zou, Jiarun Zhong, Aosai Zhang, Weikang Li, Wenjie Jiang, Li-Wei Yu, Yunyan Yao, Zhen Wang, Hekang Li, Qiujiang Guo, Chao Song, H. Wang, and Dong-Ling Deng
中国物理快报 2023, 40 (
6
): 60301-060301. DOI: 10.1088/0256-307X/40/6/060301
摘要
HTML
PDF
(14075KB)
Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles.
参考文献
|
相关文章
|
多维度评价
Select
9.
A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery
Quan Li, Yang Yang, Xiqian Yu, and Hong Li
中国物理快报 2023, 40 (
4
): 48201-048201. DOI: 10.1088/0256-307X/40/4/048201
摘要
HTML
PDF
(4280KB)
High-energy-density rechargeable lithium batteries are being pursued by researchers because of their revolutionary potential nature. Current advanced practical lithium-ion batteries have an energy density of around 300 W$\cdot$h$\cdot$kg$^{-1}$. Continuing to increase the energy density of batteries to a higher level could lead to a major explosion development in some fields, such as electric aviation. Here, we have manufactured practical pouch-type rechargeable lithium batteries with both a gravimetric energy density of 711.3 W$\cdot$h$\cdot$kg$^{-1}$ and a volumetric energy density of 1653.65 W$\cdot$h$\cdot$L$^{-1}$. This is achieved through the use of high-performance battery materials including high-capacity lithium-rich manganese-based cathode and thin lithium metal anode with high specific energy, combined with extremely advanced process technologies such as high-loading electrode preparation and lean electrolyte injection. In this battery material system, the structural stability of cathode material in a widened charge/discharge voltage range and the deposition/dissolution behavior of interfacial modified thin lithium electrode are studied.
参考文献
|
相关文章
|
多维度评价
Select
10.
Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors
Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan, Zi-Yi Liu, Jian-Ping Sun, Zhi-Ling Dun, Yoshiya Uwatoko, Gen-Fu Chen, Bo-Sen Wang, and Jin-Guang Cheng
中国物理快报 2022, 39 (
6
): 67401-. DOI: 10.1088/0256-307X/39/6/067401
摘要
HTML
PDF
(1631KB)
We report the discovery of superconductivity on the border of antiferromagnetic order in a quasi-one-dimensional material RbMn$_{6}$Bi$_{5}$ via measurements of resistivity and magnetic susceptibility under high pressures. Its phase diagram of temperature versus pressure resembles those of many magnetism-mediated superconducting systems. With increasing pressure, its antiferromagnetic ordering transition with $T_{\rm N} = 83$ K at ambient pressure is first enhanced moderately and then suppressed completely at a critical pressure of $P_{\rm c} \approx 13$ GPa, around which bulk superconductivity emerges and exhibits a dome-like $T_{\rm c}(P)$ with a maximal $T_{\rm c}^{\rm onset} \approx 9.5$ K at about 15 GPa. In addition, the superconducting state around $P_{\rm c}$ is characterized by a large upper critical field $\mu_{0}H_{\rm c2}(0)$ exceeding the Pauli paramagnetic limit, implying a possible unconventional paring mechanism. The present study, together with our recent work on KMn$_{6}$Bi$_{5}$ (the maximum $T_{\rm c}^{\rm onset} \approx 9.3$ K), makes $A$Mn$_{6}$Bi$_{5}$ ($A$ = alkali metal) a new family of Mn-based superconductors with relatively high $T_{\rm c}$.
参考文献
|
相关文章
|
多维度评价
Select
11.
Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures
Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu
中国物理快报 2022, 39 (
11
): 117601-117601. DOI: 10.1088/0256-307X/39/11/117601
摘要
HTML
PDF
(9646KB)
Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics. With the development of diamond anvil cell (DAC), laboratory studies of high pressure have entered the megabar era for decades. However, it is still challenging to implement
in situ
magnetic sensing under ultrahigh pressures. In this work, we demonstrate optically detected magnetic resonance and coherent quantum control of diamond nitrogen-vacancy (NV) center, a promising quantum sensor inside the DAC, up to 1.4 Mbar. The pressure dependence of optical and spin properties of NV centers in diamond are quantified, and the evolution of an external magnetic field has been successfully tracked at about 80 GPa. These results shed new light on our understanding of diamond NV centers and pave the way for quantum sensing under extreme conditions.
参考文献
|
相关文章
|
多维度评价
Select
12.
Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler
Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan
中国物理快报 2022, 39 (
3
): 30302-030302. DOI: 10.1088/0256-307X/39/3/030302
摘要
HTML
PDF
(1427KB)
The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing. Here, we propose and realize an all-microwave parametric controlled-Z (CZ) gates by coupling strength modulation in a superconducting Transmon qubit system with tunable couplers. After optimizing the design of the tunable coupler together with the control pulse numerically, we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%$ \pm 0.34$% and the control error being 0.1%. We note that our CZ gates are not affected by pulse distortion and do not need pulse correction, providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit. With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future, our scheme draws a blueprint for the high-integrable quantum hardware design.
参考文献
|
相关文章
|
多维度评价
Select
13.
High Mixing Entropy Enhanced Energy States in Metallic Glasses
Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang
中国物理快报 2022, 39 (
4
): 46401-046401. DOI: 10.1088/0256-307X/39/4/046401
摘要
HTML
PDF
(736KB)
Owing to the nonequilibrium nature, the energy state of metallic glasses (MGs) can vary a lot and has a critical influence on the physical properties. Exploring new methods to modulate the energy state of glasses and studying its relationship with properties have attracted great interests. Herein, we systematically investigate the energy state, mixing entropy and physical properties of Zr–Ti–Cu–Ni–Be multicomponent high entropy MGs by experiments and simulations. We find that the energy state increases along with the increase of mixing entropy. The yield strength and thermal stability of MGs are also enhanced by high mixing entropy. These results may open a new door on regulation of energy states and thus physical properties of MGs.
参考文献
|
相关文章
|
多维度评价
Select
14.
Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor
Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan
中国物理快报 2022, 39 (
7
): 77401-077401. DOI: 10.1088/0256-307X/39/7/077401
摘要
HTML
PDF
(4084KB)
Realization of Kondo lattice in superconducting van der Waals materials not only provides a unique opportunity for tuning the Kondo lattice behavior by electrical gating or intercalation, but also is helpful for further understanding the heavy fermion superconductivity. Here we report a low-temperature and vector-magnetic-field scanning tunneling microscopy and spectroscopy study on a superconducting compound (4Hb-TaS$_{2})$ with alternate stacking of 1T-TaS$_{2}$ and 1H-TaS$_{2}$ layers. We observe the quasi-two-dimensional superconductivity in the 1H-TaS$_{2}$ layer with anisotropic response to the in-plane and out-of-plane magnetic fields. In the 1T-TaS$_{2}$ layer, we detect the Kondo resonance peak that results from the Kondo screening of the unpaired electrons in the Star-of-David clusters. We also find that the intensity of the Kondo resonance peak is sensitive to its relative position with the Fermi level, and it can be significantly enhanced when it is further shifted towards the Fermi level by evaporating Pb atoms onto the 1T-TaS$_{2}$ surface. Our results not only are important for fully understanding the electronic properties of 4Hb-TaS$_{2}$, but also pave the way for creating tunable Kondo lattice in the superconducting van der Waals materials.
参考文献
|
相关文章
|
多维度评价
Select
15.
Network-Initialized Monte Carlo Based on Generative Neural Networks
Hongyu Lu, Chuhao Li, Bin-Bin Chen, Wei Li, Yang Qi, and Zi Yang Meng
中国物理快报 2022, 39 (
5
): 50701-. DOI: 10.1088/0256-307X/39/5/050701
摘要
HTML
PDF
(1714KB)
We design generative neural networks that generate Monte Carlo configurations with complete absence of autocorrelation from which only short Markov chains are needed before making measurements for physical observables, irrespective of the system locating at the classical critical point, fermionic Mott insulator, Dirac semimetal, or quantum critical point. We further propose a network-initialized Monte Carlo scheme based on such neural networks, which provides independent samplings and can accelerate the Monte Carlo simulations by significantly reducing the thermalization process. We demonstrate the performance of our approach on the two-dimensional Ising and fermion Hubbard models, expect that it can systematically speed up the Monte Carlo simulations especially for the very challenging many-electron problems.
参考文献
|
相关文章
|
多维度评价
Select
16.
Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction
Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu
中国物理快报 2022, 39 (
1
): 17401-017401. DOI: 10.1088/0256-307X/39/1/017401
摘要
HTML
PDF
(894KB)
We studied anomalous Josephson effect (AJE) in Josephson trijunctions fabricated on Bi$_2$Se$_3$, and found that the AJE in T-shaped trijunctions significantly alters the Majorana phase diagram of the trijunctions, when an in-plane magnetic field is applied parallel to two of the three single junctions. Such a phenomenon in topological insulator-based Josephson trijunction provides unambiguous evidence for the existence of AJE in the system, and may provide an additional knob for controlling the Majorana bound states in the Fu–Kane scheme of topological quantum computation.
参考文献
|
相关文章
|
多维度评价
Select
17.
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$
Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen
中国物理快报 2022, 39 (
2
): 27501-027501. DOI: 10.1088/0256-307X/39/2/027501
摘要
HTML
PDF
(1105KB)
It is known that $\alpha$-RuCl$_3$ has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid (QSL) phase and the possibility of approaching it by tuning the competing interactions. Here we present the first polarized inelastic neutron scattering study on $\alpha$-RuCl$_3$ single crystals to explore the scattering continuum around the $\varGamma$ point at the Brillouin zone center, which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence. With polarization analyses, we find that, while the spin-wave excitations around the $M$ point vanish above the transition temperature $T_{\rm N}$, the pure magnetic continuous excitations around the $\varGamma$ point are robust against temperature. Furthermore, by calculating the dynamical spin-spin correlation function using the cluster perturbation theory, we derive magnetic dispersion spectra based on the $K$–$\varGamma$ model, which involves with a ferromagnetic Kitaev interaction of $-7.2$ meV and an off-diagonal interaction of $5.6$ meV. We find this model can reproduce not only the spin-wave excitation spectra around the $M$ point, but also the non-spin-wave continuous magnetic excitations around the $\varGamma$ point. These results provide evidence for the existence of fractional excitations around the $\varGamma$ point originating from the Kitaev QSL state, and further support the validity of the $K$–$\varGamma$ model as the effective minimal spin model to describe $\alpha$-RuCl$_3$.
参考文献
|
相关文章
|
多维度评价
Select
18.
High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes
Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun
中国物理快报 2022, 39 (
3
): 36101-036101. DOI: 10.1088/0256-307X/39/3/036101
摘要
HTML
PDF
(4045KB)
Polymeric nitrogen as a new class of high energy density materials has promising applications. We develop a new scheme of crystal structure searching in a confined space using external confining potentials fitted from first-principles calculations. As a showcase, this method is employed to systematically explore novel polymeric nitrogen structures confined in single-walled carbon nanotubes. Several quasi-one-dimensional (1D) single-bonded polymeric nitrogen structures are realized, two of them are composed of nanotubes instead of chains. These new polymeric nitrogen phases are mechanically stable at ambient pressure and temperature according to phonon calculations and
ab initio
molecular dynamics simulations. It is revealed that the stabilization of zigzag and armchair chains confined in carbon nanotubes (CNTs) are mostly attributed to the charge transfer from carbon to nitrogen. However, for the novel nitrogen nanotube systems, electrons overlapping in the middle space provide strong Coulomb repulsive forces, which not only induce charge transfer from the middle to the sides but also stabilize the polymeric nitrogen. Our work provides a new strategy for designing novel high-energy-density polymeric nitrogen materials, as well as other new materials with the help of confined space inside porous systems, such as nanotubes, covalent organic frameworks, and zeolites.
参考文献
|
相关文章
|
多维度评价
Select
19.
Evidence for a High-Pressure Isostructural Transition in Nitrogen
Chunmei Fan, Shan Liu, Jingyi Liu, Binbin Wu, Qiqi Tang, Yu Tao, Meifang Pu, Feng Zhang, Jianfu Li, Xiaoli Wang, Duanwei He, Chunyin Zhou, and Li Lei
中国物理快报 2022, 39 (
2
): 26401-026401. DOI: 10.1088/0256-307X/39/2/026401
摘要
HTML
PDF
(2897KB)
We observed an isostructural phase transition in the solid nitrogen $\lambda$-N$_{2}$ at approximately 50 GPa accompanied by anomalies in lattice parameters, atomic volume and Raman vibron modes. The anomalies are ascribed to a slight reorientation of the nitrogen molecules, which does not seem to affect the monoclinic symmetry (space group $P2_{1}/c$). Our
ab initio
calculations further confirm the phenomena, and suggest an optimized structure for the $\lambda$-N$_{2}$ phase. In addition, a new high-pressure amorphous phase of $\eta '$-N$_{2}$ was also discovered by a detailed investigation of the pressure-temperature phase diagram of nitrogen with the aim of probing the phase stability of $\lambda$-N$_{2}$. Our result may provide helpful information about the crystallographic nature of dissociation transitions in diatomic molecular crystals (H$_{2}$, O$_{2}$, N$_{2}$, etc).
参考文献
|
相关文章
|
多维度评价
Select
20.
Geometric Upper Critical Dimensions of the Ising Model
Sheng Fang, Zongzheng Zhou, and Youjin Deng
中国物理快报 2022, 39 (
8
): 80502-080502. DOI: 10.1088/0256-307X/39/8/080502
摘要
HTML
PDF
(728KB)
The upper critical dimension of the Ising model is known to be $d_{\rm c}=4$, above which critical behavior is regarded to be trivial. We hereby argue from extensive simulations that, in the random-cluster representation, the Ising model simultaneously exhibits two upper critical dimensions at $(d_{\rm c}=4,~d_{\rm p}=6)$, and critical clusters for $d \geq d_{\rm p}$, except the largest one, are governed by exponents from percolation universality. We predict a rich variety of geometric properties and then provide strong evidence in dimensions from 4 to 7 and on complete graphs. Our findings significantly advance the understanding of the Ising model, which is a fundamental system in many branches of physics.
参考文献
|
相关文章
|
多维度评价
Select
21.
Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems
Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu
中国物理快报 2022, 39 (
1
): 10301-010301. DOI: 10.1088/0256-307X/39/1/010301
摘要
HTML
PDF
(1062KB)
Non-Hermitian materials can exhibit not only exotic energy band structures but also an anomalous velocity induced by non-Hermitian anomalous Berry connection as predicted by the semiclassical equations of motion for Bloch electrons. However, it is unclear how the modified semiclassical dynamics modifies transport phenomena. Here, we theoretically demonstrate the emergence of anomalous oscillations driven by either an external dc or ac electric field, which arise from non-Hermitian anomalous Berry connection. Moreover, it is a well-known fact that geometric structures of electric wave functions can only affect the Hall conductivity. However, we are surprised to find a non-Hermitian anomalous Berry connection induced anomalous linear longitudinal conductivity independent of the scattering time. We also show the emergence of a second-order nonlinear longitudinal conductivity induced by non-Hermitian anomalous Berry connection, violating a well-known fact of its absence in a Hermitian system with symmetric energy spectra. These anomalous phenomena are illustrated in a pseudo-Hermitian system with large non-Hermitian anomalous Berry connection. Finally, we propose a practical scheme to realize the anomalous oscillations in an optical system.
参考文献
|
相关文章
|
多维度评价
Select
22.
Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density
Lulu Liu, Shoutao Zhang, and Haijun Zhang
中国物理快报 2022, 39 (
5
): 56102-056102. DOI: 10.1088/0256-307X/39/5/056102
摘要
HTML
PDF
(3604KB)
Neon (Ne) can reveal the evolution of planets, and nitrogen (N) is the most abundant element in the Earth's atmosphere. Considering the inertness of neon, whether nitrogen and neon can react has aroused great interest in condensed matter physics and space science. Here, we identify three new Ne–N compounds (i.e., NeN$_6$, NeN$_{10}$, and NeN$_{22}$) under pressure by first-principles calculations. We find that inserting Ne into N$_2$ substantially decreases the polymeric pressure of the nitrogen and promotes the formation of abundant polynitrogen structures. Especially, NeN$_{22}$ acquires a duplex host-guest structure, in which guest atoms (Ne and N$_2$ dimers) are trapped inside the crystalline host N$_{20}$ cages. Importantly, both NeN$_{10}$ and NeN$_{22}$ not only are dynamically and mechanically stable but also have a high thermal stability up to 500 K under ambient pressure. Moreover, ultra-high energy densities are obtained in NeN$_{10}$ (11.1 kJ/g), NeN$_{22}$ (11.5 kJ/g), tetragonal t-N$_{22}$ (11.6 kJ/g), and t-N$_{20}$ (12.0 kJ/g) produced from NeN$_{22}$, which are more than twice the value of trinitrotoluene (TNT). Meanwhile, their explosive performance is superior to that of TNT. Therefore, NeN$_{10}$, NeN$_{22}$, t-N$_{22}$, and t-N$_{20}$ are promising green high-energy-density materials. This work promotes the study of neon-nitrogen compounds with superior properties and potential applications.
参考文献
|
相关文章
|
多维度评价
Select
23.
Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$
Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen
中国物理快报 2022, 39 (
5
): 57501-057501. DOI: 10.1088/0256-307X/39/5/057501
摘要
HTML
PDF
(2478KB)
As one of the most promising Kitaev quantum-spin-liquid (QSL) candidates, $\alpha$-RuCl$_3$ has received a great deal of attention. However, its ground state exhibits a long-range zigzag magnetic order, which defies the QSL phase. Nevertheless, the magnetic order is fragile and can be completely suppressed by applying an external magnetic field. Here, we explore the evolution of magnetic excitations of $\alpha$-RuCl$_3$ under an in-plane magnetic field, by carrying out inelastic neutron scattering measurements on high-quality single crystals. Under zero field, there exist spin-wave excitations near the $M$ point and a continuum near the $\varGamma$ point, which are believed to be associated with the zigzag magnetic order and fractional excitations of the Kitaev QSL state, respectively. By increasing the magnetic field, the spin-wave excitations gradually give way to the continuous excitations. On the verge of the critical field $\mu_0H_{\rm c}=7.5$ T, the former ones vanish and only the latter ones are left, indicating the emergence of a pure QSL state. By further increasing the field strength, the excitations near the $\varGamma$ point become more intense. By following the gap evolution of the excitations near the $\varGamma$ point, we are able to establish a phase diagram composed of three interesting phases, including a gapped zigzag order phase at low fields, possibly gapless QSL phase near $\mu_0H_{\rm c}$, and gapped partially polarized phase at high fields. These results demonstrate that an in-plane magnetic field can drive $\alpha$-RuCl$_3$ into a long-sought QSL state near the critical field.
参考文献
|
相关文章
|
多维度评价
Select
24.
Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu
中国物理快报 2022, 39 (
10
): 100202-100202. DOI: 10.1088/0256-307X/39/10/100202
摘要
HTML
PDF
(7533KB)
Topology played an important role in physics research during the last few decades. In particular, the quantum geometric tensor that provides local information about topological properties has attracted much attention. It will reveal interesting topological properties but have not been measured in non-Abelian systems. Here, we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation. By manipulating the Hamiltonian with periodic drivings, we simulate the Bernevig–Hughes–Zhang model and obtain the quantum geometric tensor from interference oscillation. In addition, we reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
参考文献
|
相关文章
|
多维度评价
Select
25.
The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques
Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang
中国物理快报 2022, 39 (
1
): 17501-017501. DOI: 10.1088/0256-307X/39/1/017501
摘要
HTML
PDF
(2307KB)
The discovery of magnetic skyrmions provides a promising pathway for developing functional spintronic memory and logic devices. Towards the future high-density memory application, nanoscale skyrmions with miniaturized diameters, ideally down to 20 nm are required. Using x-ray magnetic circular dichroism transmission microscopy, nanoscale skyrmions are observed in the [Pt/Co/Ir]$_{15}$ multilayer at room temperature. In particular, small skyrmions with minimum diameters approaching 20 nm could be generated by the current-induced spin-orbit torques. Through implementing material specific parameters, the dynamic process of skyrmion generation is further investigated by performing micromagnetic simulations. According to the simulation results, we find that both the tube-like Néel-type skyrmions and the bobber-like Néel-type skyrmions can be electrically generated. In particular, the size of the bobber-like Néel-type skyrmions can be effectively reduced by the spin-orbit torques, which leads to the formation of 20 nm Néel-type skyrmions. Our findings could be important for understanding the formation dynamics of nanoscale Néel-type spin textures, skyrmions and bobber in particular, which could also be useful for promoting nanoscale skyrmionic memories and logic devices.
参考文献
|
相关文章
|
多维度评价
Select
26.
Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr
Guibin Lan, Hongjun Xu, Yu Zhang, Chen Cheng, Bin He, Jiahui Li, Congli He, Caihua Wan, Jiafeng Feng, Hongxiang Wei, Jia Zhang, Xiufeng Han, and Guoqiang Yu
中国物理快报 2023, 40 (
5
): 58501-058501. DOI: 10.1088/0256-307X/40/5/058501
摘要
HTML
PDF
(5703KB)
Two-dimensional van der Waals magnetic materials have demonstrated great potential for new-generation high-performance and versatile spintronic devices. Among them, magnetic tunnel junctions (MTJs) based on A-type antiferromagnets, such as CrI$_{3}$, possess record-high tunneling magnetoresistance (TMR) because of the spin filter effect of each insulating unit ferromagnetic layer. However, the relatively low working temperature and the instability of the chromium halides hinder applications of this system. Using a different technical scheme, we fabricated the MTJs based on an air-stable A-type antiferromagnet, CrSBr, and observed a giant TMR of up to 47000% at 5 K. Meanwhile, because of a relatively high Néel temperature of CrSBr, a sizable TMR of about 50% was observed at 130 K, which makes a big step towards spintronic devices at room temperature. Our results reveal the potential of realizing magnetic information storage in CrSBr-based spin-filter MTJs.
参考文献
|
相关文章
|
多维度评价
Select
27.
Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature
Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu
中国物理快报 2022, 39 (
6
): 67503-. DOI: 10.1088/0256-307X/39/6/067503
摘要
HTML
PDF
(1498KB)
Antiferromagnetic materials are exciting quantum materials with rich physics and great potential for applications. On the other hand, an accurate and efficient theoretical method is highly demanded for determining critical transition temperatures, Néel temperatures, of antiferromagnetic materials. The powerful graph neural networks (GNNs) that succeed in predicting material properties lose their advantage in predicting magnetic properties due to the small dataset of magnetic materials, while conventional machine learning models heavily depend on the quality of material descriptors. We propose a new strategy to extract high-level material representations by utilizing self-supervised training of GNNs on large-scale unlabeled datasets. According to the dimensional reduction analysis, we find that the learned knowledge about elements and magnetism transfers to the generated atomic vector representations. Compared with popular manually constructed descriptors and crystal graph convolutional neural networks, self-supervised material representations can help us to obtain a more accurate and efficient model for Néel temperatures, and the trained model can successfully predict high Néel temperature antiferromagnetic materials. Our self-supervised GNN may serve as a universal pre-training framework for various material properties.
参考文献
|
相关文章
|
多维度评价
Select
28.
Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire
Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang
中国物理快报 2023, 40 (
4
): 47302-047302. DOI: 10.1088/0256-307X/40/4/047302
摘要
HTML
PDF
(9949KB)
We study a gate-tunable superconducting qubit (gatemon) based on a thin InAs-Al hybrid nanowire. Using a gate voltage to control its Josephson energy, the gatemon can reach the strong coupling regime to a microwave cavity. In the dispersive regime, we extract the energy relaxation time $T_1\sim0.56$ µs and the dephasing time $T_2^* \sim0.38$ µs. Since thin InAs-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks, our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.
参考文献
|
相关文章
|
多维度评价
Select
29.
Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$
Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu
中国物理快报 2022, 39 (
6
): 67404-. DOI: 10.1088/0256-307X/39/6/067404
摘要
HTML
PDF
(1372KB)
We performed high-pressure transport studies on the flat-band Kagome compounds, Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$ ($x=0$, 0.25), with a diamond anvil cell. For both compounds, the resistivity exhibits an insulating behavior with pressure up to 17 GPa. With pressure above 20 GPa, a metallic behavior is observed at high temperatures in Pd$_3$P$_2$S$_8$, and superconductivity emerges at low temperatures. The onset temperature of superconducting transition $T_{\rm C}$ rises monotonically from 2 K to 4.8 K and does not saturate with pressure up to 43 GPa. For the Se-doped compound Pd$_3$P$_2$(S$_{0.75}$Se$_{0.25}$)$_8$, the $T_{\rm C}$ is about 1.5 K higher than that of the undoped one over the whole pressure range, and reaches 6.4 K at 43 GPa. The upper critical field with field applied along the $c$ axis at typical pressures is about 50$\%$ of the Pauli limit, suggesting a 3D superconductivity. The Hall coefficient in the metallic phase is low and exhibits a peaked behavior at about 30 K, which suggests either a multi-band electronic structure or an electron correlation effect in the system.
参考文献
|
相关文章
|
多维度评价
Select
30.
Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials
Chaofei Liu and Jian Wang
中国物理快报 2022, 39 (
7
): 77301-. DOI: 10.1088/0256-307X/39/7/077301
摘要
HTML
PDF
(2882KB)
Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. Here, by
in situ
tunneling spectroscopy, we show the signatures of superstructure-modulated correlated electron states in epitaxial bilayer graphene (BLG) on 6H-SiC(0001). As the carrier density is locally quasi-‘tuned’ by the superlattice potentials of a $6 \times 6$ interface reconstruction phase, the spectral-weight transfer occurs between the two broad peaks flanking the charge-neutral point. Such a detected non-rigid band shift beyond the single-particle band description implies the existence of correlation effects, probably attributed to the modified interlayer coupling in epitaxial BLG by the $6 \times 6$ reconstruction as in magic-angle BLG by the moiré potentials. Quantitative analysis suggests that the intrinsic interface reconstruction shows a high carrier tunability of $\sim $1/2 filling range, equivalent to the back gating by a voltage of $\sim $70 V in a typical gated BLG/SiO$_{2}$/Si device. The finding in interface-modulated epitaxial BLG with reconstruction phase extends the BLG platform with electron correlations beyond the magic-angle situation, and may stimulate further investigations on correlated states in graphene systems and other van der Waals materials.
参考文献
|
相关文章
|
多维度评价