Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy
Ju-Geng Li1 , Sen-Miao Yang1 , Xin Chen2 , Nai-Feng Zhuang2 , Qi-Biao Zhu1 , An-Hua Wu3 , Xian Lin1 , Guo-Hong Ma1,4** , Zuan-Ming Jin1,4** , Jian-Quan Yao5
1 Department of Physics, College of Sciences, Shanghai University, Shanghai 2004442 College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 3501083 Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 2000504 STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 2012105 College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072
Abstract :Terbium scandium aluminum garnet (TSAG) crystals have been widely used in magneto-optical systems. We investigate the complex refractive index of the TSAG crystal in the terahertz frequency range using terahertz (THz) time-domain spectroscopy in the temperature range 100–300 K. It is observed that the refractive index and the absorption coefficient increase with the THz frequency. The refractive index increases with the temperature. We measure the temperature coefficient of the refractive index of the TSAG crystal in the frequency range 0.4–1.4 THz. Furthermore, the loss tangent, i.e., the ratio of experimental values of the imaginary and real part of the dielectric permittivity, is found to be almost independent of frequency. TSAG is very promising for applications in THz optoelectronics because it has a high dielectric constant, low loss, and low thermal coefficient of the dielectric constant.
收稿日期: 2019-01-18
出版日期: 2019-03-23
:
42.25.Bs
(Wave propagation, transmission and absorption)
77.22.Ch
(Permittivity (dielectric function))
78.20.Ci
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
78.47.-p
(Spectroscopy of solid state dynamics)
引用本文:
. [J]. 中国物理快报, 2019, 36(4): 44203-.
Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy. Chin. Phys. Lett., 2019, 36(4): 44203-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/36/4/044203
或
https://cpl.iphy.ac.cn/CN/Y2019/V36/I4/44203
[1] Kirilyuk A et al 2010 Rev. Mod. Phys. 82 2731 [2] Jin Z M et al 2010 Appl. Phys. Lett. 96 201108 [3] Stupakiewicz A et al 2017 Nature 542 71 [4] Mikhaylovskiy R V et al 2012 Phys. Rev. B 86 100405 [5] Jin Z M et al 2011 Acta Phys. Sin. 60 087803 (in Chinese) [6] Bakunov M I et al 2007 Phys. Rev. B 76 085346 [7] Gorelov S D et al 2012 Phys. Rev. B 88 220411(R) [8] Subkhangulov R R et al 2016 Nat. Photon. 10 111 [9] Lin X et al 2008 Acta Phys. Sin. 67 2378 (in Chinese) [10] Riordan J A et al 1997 Appl. Phys. Lett. 71 1452 [11] Qiu H S et al 2018 Opt. Lett. 43 1658 [12] Luszcz K, Bonvin E and Novotny L 2018 Appl. Phys. Lett. 113 111103 [13] Chen X, Zhang W H, Wan Q P, Guo F Y, Zhuang N F, Fu H, Xie X T and Chen J Z 2014 Opt. Mater. 37 188 [14] Lu J Y, Fu C and Chen J Z 2011 Appl. Opt. 50 116 [15] Guo F Y, Ru J J, Li H Z, Zhuang N F, Zhao B and Chen J Z 2008 J. Cryst. Growth 310 4390 [16] Kagamitani Y, Pawlak D A, Sato H, Yoshikawa A, Machida H and Fukuda T 2002 Jpn. J. Appl. Phys. 41 6020 [17] Ding S, Zhang Q, Liu W, Luo J, Sun G and Sun D 2018 J. Cryst. Growth 483 110 [18] Mironov E A and Palashov O V 2014 Opt. Express 22 23226 [19] Víllora E G, Molina1 P, Nakamura M, Shimamura K, Hatanaka T, Funaki A and Naoe K 2011 Appl. Phys. Lett. 99 011111 [20] Shi L J, Guo L W, Wei Q K, Song C G, Hu X L, Zhuang N F, Lin S K and Chen J Z 2013 J. Synth. Cryst. 42 1735 [21] Ding J X, Jin W Z, Chen Q M, Hou C H, Yu Y, Su L B, Li C, Zeng F M and Wu A H 2018 Opt. Mater. Express 8 2880 [22] Mikhaylovskiy R V, Hendry E, Ogrin F Y and Kruglyak V V 2013 Phys. Rev. B 87 094414 [23] Neu J and Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101 [24] Hangyo M, Tani M and Nagashima T 2005 J. Infrared Millimeter Terahertz Waves 26 1661 [25] Starobor A V, Snetkov I L and Palashov O V 2018 Opt. Lett. 43 3774 [26] Starobor A, Yasyhara R, Snetkov I, Mironov E and Palashov O 2015 Opt. Mater. 47 112 [27] Berdel K, Rivas J G, Bolívar P H, Maagt P and Kurz H 2005 IEEE Trans. Microwave Theory Tech. 53 1266 [28] Sun Y M, Mao Z L, Hou B L, Liu G Q and Wang L 2007 Chin. Phys. Lett. 24 414 [29] Han X W, Hou L, Yang L, Wang Z Q, Zhao M M and Shi W 2016 Chin. Phys. Lett. 33 120701 [30] Ertuğrul R and Tataroğlu A 2012 Chin. Phys. Lett. 29 077304 [31] Sattar A A and Rahman S A 2003 Phys. Stat. Sol. (a) 200 415 [32] Morimoto T, Kuroda Y and Ohki Y 2017 Jpn. J. Appl. Phys. 56 102601 [33] Kriegel I and Scotognella F 2017 Optik 142 249 [34] Adachi M, Yamahara H, Kawabe S, Matsui H and Tabata H 2014 Phys. Rev. B 89 205124 [35] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001
[1]
. [J]. 中国物理快报, 2021, 38(8): 84202-.
[2]
. [J]. 中国物理快报, 2021, 38(6): 64202-.
[3]
. [J]. 中国物理快报, 2021, 38(3): 34201-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 27801-.
[5]
. [J]. 中国物理快报, 2020, 37(12): 124202-.
[6]
. [J]. 中国物理快报, 2020, 37(9): 97201-.
[7]
. [J]. 中国物理快报, 2020, 37(8): 84202-.
[8]
. [J]. 中国物理快报, 0, (): 64101-.
[9]
. [J]. 中国物理快报, 0, (): 67801-.
[10]
. [J]. 中国物理快报, 2020, 37(6): 64101-.
[11]
. [J]. 中国物理快报, 2020, 37(6): 67801-.
[12]
. [J]. 中国物理快报, 2020, 37(5): 57801-.
[13]
. [J]. 中国物理快报, 2020, 37(4): 44205-.
[14]
. [J]. 中国物理快报, 2019, 36(12): 124202-.
[15]
. [J]. 中国物理快报, 2019, 36(12): 124205-.