Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density
Zhi-Miao Lu, Li Cai, Ji-Hong Wen** , Xing Chen
Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073
Abstract :Transformation acoustics are concentrated for the purpose of designing novel acoustic devices to tailor acoustic waves to achieve desirable characteristics. However, these devices require fluid or fluid-like materials with an anisotropic density that generally does not exist in nature. Therefore, we introduce pentamode metamaterials into an alternating multilayer isotropic medium model to build fluid-like metamaterials with an anisotropic density. A 2D acoustic bending based on transformation acoustics is established and investigated to verify our method. This idea provides a method to design broadband and physically realizable acoustic metamaterials with an anisotropic density and is meaningful for the design of acoustic metamaterials.
收稿日期: 2018-10-29
出版日期: 2019-01-22
:
43.35.+d
(Ultrasonics, quantum acoustics, and physical effects of sound)
43.20.+g
(General linear acoustics)
43.40.+s
(Structural acoustics and vibration)
[1] Cummer S A, Christensen J and Alu A 2016 Nat. Rev. Mater. 1 16001 [2] Chen H and Chan C T 2010 J. Phys. D 43 113001 [3] Norris A N 2008 Proc. R. Soc. London A 464 2411 [4] Zigoneanu L, Popa B I, Starr A F and Cummer S A 2011 J. Appl. Phys. 109 054906 [5] Bi Y F, Han J, Lu W J, Ji P and Yang J 2017 Sci. Rep. 7 705 [6] Bi Y F, Jia H, Sun Z Y, Yang Y Z, Zhao H and Yang J 2018 Appl. Phys. Lett. 112 223502 [7] Chen Y, Liu X N and Hu G K 2015 Sci. Rep. 5 15745 [8] Akl W and Baz A 2012 J. Appl. Phys. 111 044505 [9] Lu W J, Jia H, Bi Y F, Yang Y Z and Yang J 2017 J. Acoust. Soc. A 142 84 [10] Sun Z Y, Jia H, Chen Y, Wang Z and Yang J 2018 J. Acoust. Soc. A 143 1029 [11] Wu L Y, Chiang T Y, Tsai C N, Wu M L and Chen L W 2012 Appl. Phys. A 109 523 [12] Zhao L, Conlon S C and Semperlotti F 2014 Smart Mater. Struct. 23 065021 [13] Xu T, Zhu X F, Liang B, Li Y, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 033509 [14] Cai L, Wen J H, Yu D L, Lu Z M and Wen X S 2014 Chin. Phys. Lett. 31 094303 [15] Cummer S A and Schurig D 2007 New J. Phys. 9 45 [16] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913 [17] Liu Z Y, Zhang X X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2012 Science 338 201 [18] Torrent D and Sánchezdehesa J 2008 New J. Phys. 10 063015 [19] Torrent D and Sánchezdehesa J 2010 Phys. Rev. Lett. 105 174301 [20] Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301 [21] Norris A 2011 J. Acoust. Soc. Am. 130 2359 [22] Gokhale N H, Cipolla J L and Norris A N 2012 J. Acoust. Soc. Am. 132 2932 [23] Milton G W and Cherkaev A 1995 J. Eng. Mater. T 117 483 [24] Kadic M, Bückmann T, Schittny R and Wegener M 2013 New J. Phys. 15 023029 [25] Layman C N, Naify C J, Martin T P, Calvo D C and Orris G J 2013 Phys. Rev. Lett. 111 024302 [26] Su X, Norris A N, Cushing C W, Haberman M R and Wilson P S 2017 J. Acoust. Soc. A 141 4408 [27] Fu M H and Yin J R 1999 Acta Mech. Sin. 31 133 (in Chinese) [28] Gibson L J and Ashby M F 1982 Proc. R. Soc. London 382 43
[1]
. [J]. 中国物理快报, 0, (): 64301-.
[2]
. [J]. 中国物理快报, 2020, 37(6): 64301-.
[3]
. [J]. 中国物理快报, 2020, 37(5): 54301-.
[4]
. [J]. 中国物理快报, 2019, 36(11): 114301-.
[5]
. [J]. 中国物理快报, 2019, 36(10): 107801-.
[6]
. [J]. 中国物理快报, 2019, 36(9): 94301-.
[7]
. [J]. 中国物理快报, 2019, 36(8): 84301-.
[8]
. [J]. 中国物理快报, 2019, 36(3): 34301-.
[9]
. [J]. 中国物理快报, 2018, 35(12): 124301-.
[10]
. [J]. 中国物理快报, 2018, 35(11): 114302-.
[11]
. [J]. 中国物理快报, 2018, 35(10): 104301-.
[12]
. [J]. 中国物理快报, 2018, 35(8): 84302-.
[13]
. [J]. 中国物理快报, 2017, 34(8): 84302-.
[14]
. [J]. 中国物理快报, 2017, 34(6): 64301-.
[15]
. [J]. 中国物理快报, 2017, 34(6): 64302-.