Relativistic Spherical Plasma Waves in a Collisional and Warm Plasma
Zhong-Kui Kuang1,2 , Li-Hong Cheng1,3 , Pan-Fei Geng1 , Rong-An Tang1 , Ju-Kui Xue1**
1 College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 7300702 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 7300003 School of Science, Guizhou University of Engineering Science, Bijie 551700
Abstract :Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry, thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.
收稿日期: 2018-04-27
出版日期: 2018-11-23
:
52.35.-g
(Waves, oscillations, and instabilities in plasmas and intense beams)
52.20.Hv
(Atomic, molecular, ion, and heavy-particle collisions)
52.27.Ny
(Relativistic plasmas)
[1] Akhiezer A I and Polovin R V 1956 Sov. Phys. JETP 30 915 [2] Dawson J M 1959 Phys. Rev. 113 383 [3] Bulanov S V, Esirkepov T and Tajima T 2003 Phys. Rev. Lett. 91 085001 [4] Kando M, Fukuda Y, Pirozhkov A S et al 2007 Phys. Rev. Lett. 99 135001 [5] Kando M, Pirozhkov A S, Kawase K et al 2009 Phys. Rev. Lett. 103 235003 [6] Koch P and Albritton J 1974 Phys. Rev. Lett. 32 1420 [7] Zhang L, Dong Q L, Zhao J et al 2009 Acta Phys. Sin. 58 1833 (in Chinese) [8] Modena A, Najmudin Z, Dangor A E et al 1995 Nature 19 377 [9] Dawson J M 1989 Sci. Am. 260 54 [10] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [11] Joshi C, Mori W B, Katsouleas T et al 1984 Nature 311 525 [12] Karmakar M, Maity C, Chakrabarti N and Sengupta S 2016 Eur. Phys. J. D 70 144 [13] Mangles S P D, Murphy C D, Najmudin Z et al 2004 Nature 431 535 [14] Geddes C G R, Toth C, van Tilborg J et al 2004 Nature 431 538 [15] Faure J, Glinec Y, Pukhov A et al 2004 Nature 431 541 [16] Leemans W P, Nagler B, Gonsalves A J et al 2006 Nat. Phys. 2 696 [17] Hafz N A M, Jeong T M et al 2008 Nat. Photon. 2 571 [18] Stix T H 1962 Theory Plasma Waves (New York: McGraw-Hill) [19] Bulanov S S, Maksimchuk A, Schroeder C B et al 2012 Phys. Plasmas 19 020702 [20] Davidson R C and Schram P P 1968 Nucl. Fusion 8 183 [21] Davidson R C 1972 Methods Nonlinear Plasma Theory (New York: Academic) [22] Kaw P 1970 Phys. Fluids 13 472 [23] Coffey T P 1971 Phys. Fluids 14 1402 [24] Katsouleas T and Mori W B 1988 Phys. Rev. Lett. 61 90 [25] Kruer W L 1979 Phys. Fluids 22 1111 [26] Rosenzweig J B 1988 Phys. Rev. A 38 3634 [27] Chen F F 1990 Phys. Scr. T30 14 [28] Sheng Z M and Meyer-ter-Vehn J 1997 Phys. Plasmas 4 493 [29] Mori W B and Katsouleas T 1990 Phys. Scr. T30 127 [30] Asenjo F A, Borotto F A, Chian Abraham C L et al 2012 Phys. Rev. E 85 046406 [31] Mikhailovskii A B, Onishchenko O G and Tatarinov E G 1985 Plasma Phys. Control. Fusion 27 527 [32] Brantov A V, Esirkepov T Z, Kando M et al 2008 Phys. Plasmas 15 073111 [33] Rosenbluth M N and Liu C S 1972 Phys. Rev. Lett. 29 701
[1]
. [J]. 中国物理快报, 2017, 34(7): 75202-.
[2]
. [J]. 中国物理快报, 2016, 33(08): 85203-085203.
[3]
. [J]. 中国物理快报, 2015, 32(12): 125202-125202.
[4]
. [J]. 中国物理快报, 2013, 30(5): 55201-055201.
[5]
. [J]. Chin. Phys. Lett., 2013, 30(3): 34102-034102.
[6]
. [J]. 中国物理快报, 2012, 29(8): 85201-085201.
[7]
B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas [J]. 中国物理快报, 2012, 29(7): 75202-075202.
[8]
B. Farokhi;** F. Amini;M. Eghbali
. Dust Acoustic Rotation Modes in Magnetized Complex Plasmas [J]. 中国物理快报, 2011, 28(7): 75203-075203.
[9]
S. Ali Shan;**;A. Mushtaq
. Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure [J]. 中国物理快报, 2011, 28(7): 75204-075204.
[10]
SUN Xiao-Xia;WANG Chun-Hua;GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals [J]. 中国物理快报, 2010, 27(2): 25204-025204.
[11]
PENG Li-Li;GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes [J]. 中国物理快报, 2008, 25(11): 4065-4067.
[12]
ZHOU Yan;LI Lian-Cai;LI Yong-Gao;JIAO Yi-Ming;DENG Zhong-Chao;YI Jiang;LIU Yi;ZHAO Kai-Jun;JI Xiao-Quan;PENG Bei-Bin;YANG Qing-wei;DUAN Xu-Ru;DING Xuan-Tong. Density Fluctuation Measurements Using FIR Interferometer on HL-2A Tokamak [J]. 中国物理快报, 2008, 25(7): 2558-2561.
[13]
ZHOU Zhu-Wen;M. A. LIEBERMAN;Sungjin KIM;JI Shi-Yin;DENG Ming-Sen;SUN Guang-Yu. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes [J]. 中国物理快报, 2008, 25(2): 707-710.
[14]
FENG Shuo;HE Feng;OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge [J]. 中国物理快报, 2007, 24(8): 2304-2307.
[15]
GAN Bao-Xia;CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions [J]. 中国物理快报, 2007, 24(7): 2003-2005.