Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction
Meng Qin** , Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li
Department of General Education, Army Engineering University of PLA, Nanjing 211101
Abstract :Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg $XXZ$ model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law.
收稿日期: 2018-05-17
出版日期: 2018-09-15
:
03.65.Ud
(Entanglement and quantum nonlocality)
03.67.-a
(Quantum information)
03.67.Mn
(Entanglement measures, witnesses, and other characterizations)
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Horodecki P and Horodecki R 2001 Quantum Inf. Comput. 1 45 [3] Lo R, D'Arrigo A, Falci G, Compagno G and Paladino E 2014 Phys. Rev. B 90 054304 [4] D'Arrigo A, Franco R L, Benenti G, Paladino E and Falci G 2014 Ann. Phys. 350 211 [5] Duran D, Vercin A and Yilmaz S 2014 Phys. Rev. A 90 042320 [6] Zhang G F and Li S S 2006 Opt. Commun. 260 347 [7] Zhang G F and Li S S 2006 Solid State Commun. 138 17 [8] Zheng Q, Yao Y and Xu X W 2015 Commun. Theor. Phys. 63 279 [9] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608 [10] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110 [11] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402 [12] Basu B, Bandyopadhyay P and Majumdar P 2015 Phys. Rev. A 92 022343 [13] Wilson K G 1975 Rev. Mod. Phys. 47 773 [14] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414 [15] Jafari R 2013 Phys. Lett. A 377 3279 [16] Qin M, Ren Z Z and Zhang X 2016 Sci. Rep. 6 26042 [17] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309 [18] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302 [19] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319 [20] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346 [21] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304 [22] Zhang G F 2007 Phys. Rev. A 75 034304 [23] Zhang G F 2007 J. Phys. 19 456205 [24] Kikuchi T, Koretsune T, Arita R and Tatara G 2016 Phys. Rev. Lett. 116 247201 [25] Qin M, Zhai X Y, Chen X, Li Y B, Wang X and Bai Z 2012 Chin. Phys. Lett. 29 030305 [26] Zhang Z D 2007 Philos. Mag. 87 5309 [27] Zhou Z W, Yu B, Zhou X X et al 2004 Phys. Rev. Lett. 93 010501 [28] Guo J L, Wang L and Long G L 2013 Ann. Phys. 330 192 [29] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [30] Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435
[1]
. [J]. 中国物理快报, 2022, 39(11): 110301-.
[2]
. [J]. 中国物理快报, 2022, 39(7): 70302-.
[3]
. [J]. 中国物理快报, 2022, 39(3): 30302-030302.
[4]
. [J]. 中国物理快报, 2022, 39(3): 30301-.
[5]
. [J]. 中国物理快报, 2021, 38(9): 90301-.
[6]
. [J]. 中国物理快报, 2020, 37(9): 90302-.
[7]
. [J]. 中国物理快报, 0, (): 60301-.
[8]
. [J]. 中国物理快报, 2020, 37(6): 60301-.
[9]
. [J]. 中国物理快报, 2020, 37(1): 10301-010301.
[10]
. [J]. 中国物理快报, 2019, 36(10): 100301-.
[11]
. [J]. 中国物理快报, 2019, 36(8): 80303-.
[12]
. [J]. 中国物理快报, 2019, 36(8): 80304-.
[13]
. [J]. 中国物理快报, 2019, 36(6): 60301-.
[14]
. [J]. 中国物理快报, 2018, 35(11): 110302-.
[15]
. [J]. 中国物理快报, 2018, 35(9): 90303-.