Magnetic Field of a Compact Spherical Star under f(R,T) Gravity
Safiqul Islam1** , Shantanu Basu2
1 Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi Allahabad-211019, India2 Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
Abstract :We present the interior solutions of distributions of magnetized fluid inside a sphere in $f(R,T)$ gravity. The magnetized sphere is embedded in an exterior Reissner–Nordström metric. We assume that all physical quantities are in static equilibrium. The perfect fluid matter is studied under a particular form of the Lagrangian density $f(R,T)$. The magnetic field profile in modified gravity is calculated. Observational data of neutron stars are used to plot suitable models of magnetized compact objects. We reveal the effect of $f(R,T)$ gravity on the magnetic field profile, with application to neutron stars, especially highly magnetized neutron stars found in x-ray pulsar systems. Finally, the effective potential $V_{\rm eff}$ and innermost stable circular orbits, arising out of the motion of a test particle of negligible mass influenced by attraction or repulsion from the massive center, are discussed.
收稿日期: 2018-05-18
出版日期: 2018-08-29
[1] Starobinsky A A 1980 Phys. Lett. B 91 99 [2] Smoot G F et al 1992 Astrophys. J. 396 L1 [3] Huterer D and Turner M S 1999 Phys. Rev. D 60 081301 [4] Riess A G et al 1999 Astron. J. 117 707 [5] Tegmark M et al 2006 Phys. Rev. D 74 123507 [6] Eisenstein D J et al 2005 Astrophys. J. 633 560 [7] Spergel D N et al 2007 Astrophys. J. Suppl. Ser. 170 377 [8] Kowalski M et al 2008 Astrophys. J. 686 749 [9] Nesseris S and Perivolaropoulos L 2005 Phys. Rev. D 72 123519 [10] Poplawski N J 2006 arXiv:gr-qc/0608031 [11] Harko T, Lobo F S N, Nojiri S and Odintsov S D 2011 Phys. Rev. D 84 024020 [12] Sharif M and Zubair M 2012 J. Phys. Soc. Jpn. 81 114005 [13] Turimov B V, Ahmedov B J and Hakimov A A 2017 Phys. Rev. D 96 104001 [14] Landau L D and Lifshitz E M 1998 The Classical Theory of Fields (Oxford: Butterworth-Heinemann) [15] Barrientos O J et al 2014 Phys. Rev. D 90 028501 [16] Moraes P H R S 2014 Astrophys. Space Sci. 352 273 [17] Moraes P H R S 2015 Eur. Phys. J. C 75 168 [18] Das A, Rahaman F, Guha B K and Ray S 2016 Eur. Phys. J. C 76 654 [19] Hakimov A, Abdujabbarov A and Ahmedov B 2013 Phys. Rev. D 88 024008 [20] Ahmedov B J and Fattoyev F J 2008 Phys. Rev. D 78 047501 [21] Rezzolla L, Ahmedov B J and Miller J C 2001 Mon. Not. R. Astron. Soc. 322 723 [22] Ginzburg V L and Ozernoy L M 1964 Zh. Eksp. Teor. Fiz. 47 1030 [23] Anderson J L and Cohen J M 1970 Astrophys. Space Sci. 9 146 [24] Petterson J A 1974 Phys. Rev. D 10 3166 [25] Gupta A, Mishra A, Mishra H and Prasanna A R 1998 Class. Quantum Grav. 15 3131 [26] Prasanna A R and Gupta A 1997 Nuovo Cimento B 112 1089 [27] Lobo F S N, Harko T and Kovács Z 2010 arXiv:1001.3517v1 [28] Abdujabbarov A, Ahmedov B and Ahmedov B B 2011 Phys. Rev. D 84 044044 [29] Hakimov A, Turimov B, Abdujabbarov A and Ahmedov B 2010 Mod. Phys. Lett. A 25 3115 [30] Abdujabbarov A, Ahmedov B and Hakimov A 2011 Phys. Rev. D 83 044053 [31] Enolski V, Hartmann B, Kagramanova V, Kunz J, Lämmerzahl C and Sirimachan P 2012 J. Math. Phys. (N. Y.) 53 012504 [32] Enolski V et al 2011 Phys. Rev. D 84 084011 [33] Arfken G B and Weber H J 2001 Math. Methods For Physicists (San Diego: Academic Press) 5th edn [34] Deb R, Paul B C and Tikekar R 2012 Pramana 79 211 [35] Lattimer J 2010 http://stellarcollapse.org/nsmasses [36] Sharma R, Mukherjee S, Dey M and Dey J 2002 Mod. Phys. Lett. A 17 827 [37] Sharma R and Maharaj S D 2007 Mon. Not. R. Astron. Soc. 375 1265 [38] Bic̆ák J and Janis̆ V 1985 Mon. Not. R. Astron. Soc. 212 899 [39] Karas V and Vokroulflicky D 1992 Gen. Relativ. Gravit. 24 729 [40] Kopác̆ek O and Karas V 2014 Astrophys. J. 787 117 [41] Li D and Wu X 2018 arXiv:1803.02119v1 [42] Karas V et al 2014 Acta Polytechnica 54 398 [43] Braithwaite J 2009 Mon. Not. R. Astron. Soc. 397 763 [44] Pethick C J and Sahrling M 1995 Astrophys. J. 453 L29 [45] Dvornikov M 2016 Nucl. Phys. B 913 79 [46] Dvornikov M 2017 Int. J. Mod. Phys. D 26 1750184
[1]
. [J]. 中国物理快报, 2017, 34(9): 90401-.
[2]
. [J]. 中国物理快报, 2016, 33(05): 50401-050401.
[3]
. [J]. 中国物理快报, 2014, 31(11): 110402-110402.
[4]
. [J]. 中国物理快报, 2014, 31(09): 90401-090401.
[5]
. [J]. 中国物理快报, 2013, 30(10): 100401-100401.
[6]
. [J]. 中国物理快报, 2013, 30(6): 60401-060401.
[7]
ZHANG Tao;WU Pu-Xun;YU Hong-Wei;**
. Gödel-Type Universes in f (R ) Gravity with an Arbitrary Coupling between Matter and Geometry [J]. 中国物理快报, 2011, 28(12): 120401-120401.
[8]
AO Xi-Chen**;LI Xin-Zhou;XI Ping
. Cosmological Dynamics of de Sitter Gravity [J]. 中国物理快报, 2011, 28(4): 40401-040401.
[9]
WEN De-Hua. Equation of State in the σ-ω-ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star [J]. 中国物理快报, 2010, 27(1): 10401-010401.
[10]
M. Khayrul Hasan;M. Hossain Ali. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner-Nordström-de Sitter Black Hole [J]. 中国物理快报, 2009, 26(10): 109501-109501.
[11]
LUO Xin-Lian. Neutrino Lensing [J]. 中国物理快报, 2009, 26(10): 109801-109801.
[12]
Mahamat Saleh;Bouetou Bouetou Thomas;;Timoleon Crepin Kofane;. Quasi-Normal Modes of Gravitational Perturbation around a Reissner-Nordström Black Hole Surrounded by Quintessence [J]. 中国物理快报, 2009, 26(10): 109802-109802.
[13]
Shri Ram;M. K. Verma;Mohd. Zeyauddin. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation [J]. 中国物理快报, 2009, 26(8): 89802-089802.
[14]
YI Ying;LI Fang-Yu. Alternative Solutions to Bianchi Type-I Cosmology [J]. 中国物理快报, 2007, 24(8): 2444-2447.
[15]
WEN De-Hua;CHEN Wei;LU Yi-Gang;LIU Liang-Gang. Properties of Neutron Stars Rotating at Kepler Frequency with Uniform Strong Magnetic Field [J]. 中国物理快报, 2007, 24(3): 628-631.