High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient
Yun-Kai Zhou1,2** , Xing Zhang2 , Shu-Guang Liu2 , Ming-Zhen Ma2 , Ri-Ping Liu2**
1 School of Mechanical Engineering, Yanshan University, Qinhuangdao 0660042 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Abstract :Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented. The XRD diffraction results demonstrate that only a close-packed hexagonal phase ($\alpha$ or $\alpha'$ phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties. Also, its thermal expansion coefficient is stable through solution treatment.
收稿日期: 2018-04-08
出版日期: 2018-07-15
:
65.40.De
(Thermal expansion; thermomechanical effects)
64.70.kd
(Metals and alloys)
62.20.M-
(Structural failure of materials)
81.40.Cd
(Solid solution hardening, precipitation hardening, and dispersion hardening; aging)
[1] Yuan X J, Sheng G M and Qin B 2008 Mater. Charact. 59 930 [2] Yu X, Wang C B, Jiang G W, Liu H S and Hu M 2004 Vacuum 72 461 [3] Ivasishin O M, Markovsky P E, Matviychuk Y V and Semiatin S L 2003 Metall. Mater. Trans. A 34 147 [4] Schutz R W and Watkins H B 1998 Mater. Sci. & Eng. A 243 305 [5] Suyalatu, Nomura N, Oya Y, Tanaka Y, Kondo R, Doi H, Tsutsumi Y and Hanawa T 2010 Acta Biomater. 6 1033 [6] Tewari R, Srivastava D, Dey G K, Chakravarty J K and Banerjee S 2008 J. Nucl. Mater. 383 153 [7] Hsu H C, Wu S C, Sung Y C and Ho W F 2009 J. Alloys Compd. 488 279 [8] Sun B R, Zhan Z J, Liang B, Zhang R J and Wang W K 2012 Chin. Phys. B 21 056101 [9] Zhou Y K, Jing R, Ma M Z and Liu R P 2013 Chin. Phys. Lett. 30 116201 [10] Zhou Y K, Feng Z H, Xia C Q, Liu W C, Jing Q, Liang S X, Ma M Z, Zhang Z G, Zhang X Y and Liu R P 2016 Trans. Nonferrous Met. Soc. Chin. 26 2086 [11] Zhang Z G, Zhou Y K, Jiang X J, Feng Z H, Xia C Q, Zhang X Y, Ma M Z and Liu R P 2016 Mater. Sci. & Eng. A 651 370 [12] Jiang X J, Zhou Y K, Feng Z H, Xia C Q, Tan C L, Liang S X, Zhang X Y, Ma M Z and Liu R P 2015 Mater. Sci. & Eng. A 639 407 [13] Jiang X J, Zhou Y K, Tan C L, Ma M Z and Liu R P 2014 Mater. Des. 64 21 [14] Liang S X, Yin L X, Zhou Y K, Feng X J, Ma M Z, Liu R P and Tan C L 2014 J. Alloys Compd. 615 804 [15] Jia Y D, Cao F Y, Scudino S, Ma P, Li H C, Yu L, Eckert J and Sun J F 2014 Mater. Des. 57 585 [16] Zhou Y K, Liang S X, Jing R, Jiang X J, Ma M Z, Tan C L and Liu R P 2015 Mater. Sci. & Eng. A 621 259 [17] Leyens C and Peters M 2003 Titanium Titanium Alloys (New York: Weinheim Wiley-VCH) p 3 [18] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q and Liu R P 2012 Mater. Sci. & Eng. A 539 42
[1]
. [J]. 中国物理快报, 2021, 38(2): 26501-.
[2]
. [J]. 中国物理快报, 2019, 36(6): 66301-.
[3]
. [J]. 中国物理快报, 2018, 35(12): 126501-.
[4]
. [J]. 中国物理快报, 2016, 33(11): 116102-116102.
[5]
. [J]. 中国物理快报, 2016, 33(04): 46501-046501.
[6]
. [J]. 中国物理快报, 2016, 33(04): 46502-046502.
[7]
. [J]. 中国物理快报, 2016, 33(04): 46503-046503.
[8]
. [J]. 中国物理快报, 2015, 32(07): 70702-070702.
[9]
. [J]. 中国物理快报, 2015, 32(4): 47501-047501.
[10]
. [J]. 中国物理快报, 2014, 31(07): 76501-076501.
[11]
. [J]. 中国物理快报, 2014, 31(1): 16401-016401.
[12]
. [J]. 中国物理快报, 2013, 30(12): 126502-126502.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(3): 36501-036501.
[14]
SONG Hua-Jie;HUANG Feng-Lei**
. Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles [J]. 中国物理快报, 2011, 28(9): 96103-096103.
[15]
LIU Xi**;LIU Wei;HE Qiang;DENG Li-Wei;WANG He-Jin;HE Duan-Wei;LI Bao-Sheng
. Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2 [J]. 中国物理快报, 2011, 28(3): 36401-036401.