Resistance and Reactance of Monopole Fields Induced by a Test Charge Drifting Off-Axis in a Cold and Collisional Cylindrical Plasma
M. S. Bawa'aneh1** , A. M. Al-Khateeb1 , Y. -c. Ghim2
1 Department of Physics, Yarmouk University, Irbid, Jordan2 Department of Nuclear and Quantum Engineering, KAIST, Daejeon, Korea
Abstract :We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency $\omega_{\rm pe}$, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
收稿日期: 2018-01-09
出版日期: 2018-07-15
:
51.50.+v
(Electrical properties)
52.50.Gj
(Plasma heating by particle beams)
52.50.Sw
(Plasma heating by microwaves; ECR, LH, collisional heating)
52.25.Mq
(Dielectric properties)
[1] Johnson C 1965 Field and Wave Electrodynamics (New York: McGraw-Hill) [2] Shkarofsky I P et al 1966 The Particle Kinetics of Plasmas (New York: Addision-Wesley) [3] Kral N A and Trivelpiece A W 1973 Principles of Plasma Physics (New York: McGraw-Hill) [4] Boardman A D 1982 Electromagnetic Surface Modes (New York: Wiley) [5] Aliev Yu M et al 2000 Guided–Wave–Produced Plasmas (Berlin: Sringer) [6] Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784 [7] Popov O A 1990 J. Vac. Sci. Technol. A 8 2909 [8] Carl D A et al 1991 J. Vac. Sci. Technol. B 9 339 [9] Asmussen J and Mak P 1994 Rev. Sci. Instrum. 65 1753 [10] Gudmundsson T J and Lieberman M A 1998 Plasma Sources Sci. Technol. 7 83 [11] Iza F and Hopwood J 2005 Plasma Sources Sci. Technol. 14 397 [12] Chen F F 2006 Plasma Sources Sci. Technol. 15 773 [13] Barov N et al 2004 Phys. Rev. Spec. Top. Accel. Beams 7 061301 [14] Al-Khateeb A, Hasse R W, Boine-Frankenheim O and Hofmann I 2008 New J. Phys. 10 083008 [15] Zimmermann F 2004 Phys. Rev. ST Accel. Beams 7 124801 [16] Zenkevich P, Mustafin N and Boine-Frankenheim O 2002 Proc. ECLOUD 2002 (Yellow Report CERN-2002-001) [17] Chao A W 1993 Physics of Collective Beam Instability in High Energy Accelerators (New York: John Wiley & Sons) [18] Al-Khateeb A M, Hasse R W and Boine-Frankenheim O 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 593 171 [19] Ng K Y 2006 Physics of Intensity Dependent Beam Instabilities (Singapore: World Scientific Publishing Co. pte. Ltd.) [20] Bawa'aneh M S and Boyd T J M 2007 J. Plasma Phys. 73 159 [21] Bawa'aneh M S, Al-Khateeb A M and Sawalha A S 2012 Can. J. Phys. 90 241 [22] Bawa'aneh M S, Al-Khateeb A M and Sawalha A S 2013 IEEE Trans. Plasma Sci. 41 2496 [23] Bawa'aneh M S, Ghada Assayed, Said M R and Al–Awfi S 2014 Can. J. Phys. 92 504 [24] Collin R E 1991 Field Theory of Guided Waves (New York: IEEE) [25] Pozar D M 1990 Microwave Engineering (New York: Addison-Wesley) [26] Dome G Basic RF Theory, Waveguides and Cavities, CERN Yellow Reports, CAS-CERN Accelerator School and Rutherford Appleton Laboratory: Course on Rf Engineering for Particle Accelerators (CERN 92-03 V0l.1, Geneva, Switzerland) [27] Jackson J D 1998 Class. ElectroDyn. 3rd edn (New York: Wiley) [28] Gluckstern R L 2000 CERN Yellow Report CERN 2000-011 [29] Al-Khateeb A, Boine-Frankenheim O, Hasse R and Hofmann I 2005 Phys. Rev. E 71 026501 [30] Singh Pal K and Roy S 2007 Appl. Phys. Lett. 91 081504 [31] Brouk V and Heckman R 2004 Stabilizing RF Generator Plasma Interact.: 47th Annu. Tech. Conf. Proceeding Soc. Vac. Coaters (April 24–29 Dallas TX USA) p 49 [32] Keil E 1972 Nucl. Instrum. Methods 100 419 [33] Levine J S 1984 Int. J. Infrared Millimeter Waves 5 937 [34] Al-Khateeb A, Boine-Frankenheim O, Plotnikov A, Shim, Y S and Hänichen L 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 626 1
[1]
. [J]. 中国物理快报, 2017, 34(12): 125202-.
[2]
. [J]. 中国物理快报, 2017, 34(7): 77701-.
[3]
. [J]. 中国物理快报, 2015, 32(02): 25101-025101.
[4]
. [J]. 中国物理快报, 2014, 31(07): 75201-075201.
[5]
LI Shang;OUYANG Ji-Ting;HE Feng. Transition of Discharge Mode of a Local Hollow Cathode Discharge [J]. 中国物理快报, 2010, 27(6): 65201-065201.
[6]
LIANG Zhuo;LUO Hai-Yun;Wang Xin-Xin;LV Bo;GUAN Zhi-Cheng;WANGLi-Ming. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge [J]. 中国物理快报, 2008, 25(6): 2136-2139.
[7]
CHEN Ming;LIU Xiang-Dong;SUN Yu-Ming;YANG Xin-Mei;ZHAO Ming-Wen;QI Huan-Jun;CHEN Xiu-Fang;XU Xian-Gang. Detailed Characteristics of Expansion Velocity of Si from Laser Ablated SiC [J]. 中国物理快报, 2008, 25(5): 1768-1771.
[8]
LIANG Ting;GUO Xia;GUAN Bao-Lu;GUO Jing;GU Xiao-Ling;LIN Qiao-Ming;SHEN Guang-Di. A Flip-Chip AlGaInP LED with GaN/Sapphire Transparent Substrate Fabricated by Direct Wafer Bonding [J]. 中国物理快报, 2007, 24(4): 1110-1113.
[9]
D. AKBAR;S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube [J]. 中国物理快报, 2006, 23(9): 2498-2501.
[10]
MENG Xu-Jun;ZHU Xi-Rui;TIAN Ming-Feng;JIANG Min-Hao;WANG Zhi-Gang. Free or Quasi-Free Electronic Density of States in a Confined Atom [J]. 中国物理快报, 2005, 22(2): 310-313.
[11]
ZHANG Yuan-Tao;WANG De-Zhen;WANG Yan-Hui;LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier [J]. 中国物理快报, 2005, 22(1): 171-174.
[12]
WANG Yan-Hui;WANG De-Zhen. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium [J]. 中国物理快报, 2004, 21(11): 2234-2237.
[13]
OU Qiong-Rong;MENG Yue-Dong;XU Xu;SHU Xing-Sheng;REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge [J]. 中国物理快报, 2004, 21(7): 1317-1319.
[14]
QIN Yuan-Dong;WANG Dan-Ling;WANG Shu-Feng;GONG Qi-Huang. Spectral and Temporal Properties of Femtosecond White-Light Continuum Generated in H2 O [J]. 中国物理快报, 2001, 18(3): 390-392.
[15]
HE Zheng-Hao; LI Jin. Effect of Background Ions on the Selection of the Discharge Path [J]. 中国物理快报, 2001, 18(2): 248-250.