Lithium/Silver-Doped Cu$_{2}$ZnSnS$_{4}$ with Tunable Band Gaps and Phase Structures: a First-Principles Study
Jun Zhang1 , Jun Liao1 , Le-Xi Shao1 , Shu-Wen Xue1** , Zhi-Guo Wang2**
1 School of Physical Science and Technology, Lingnan Normal University, Zhanjiang 5240482 School of Electronics Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu 610054
Abstract :Doping is an effective approach for improving the photovoltaic performance of Cu$_{2}$ZnSnS$_{4}$ (CZTS). The doping by substitution of Cu atoms in CZTS with Li and Ag atoms is investigated using density functional theory. The results show that the band gaps of Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ and Ag$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ can be tuned in the ranges of 1.30–3.43 and 1.30–1.63 eV, respectively. The calculation also reveals a phase transition from kesterite to wurtzite-kesterite for Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ as $x$ is larger than 0.9. The tunable band gaps of Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ and Ag$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ make them beneficial for achieving band-gap-graded solar cells.
收稿日期: 2018-04-18
出版日期: 2018-07-15
:
31.15.A-
(Ab initio calculations)
71.55.Gs
(II-VI semiconductors)
78.20.-e
(Optical properties of bulk materials and thin films)
[1] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 [2] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465 [3] Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046-n/a [4] Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911 [5] Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109 [6] Pianezzi F, Reinhard P, Chirila A, Bissig B, Nishiwaki S, Buecheler S and Tiwari A N 2014 Phys. Chem. Chem. Phys. 16 8843 [7] Han M, Zhang X and Zeng Z 2017 Phys. Chem. Chem. Phys. 19 17799 [8] Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Adv. Energy Mater. 5 1500682 [9] Khadka D B, Kim S and Kim J 2016 J. Phys. Chem. C 120 4251 [10] Yang Y, Kang X, Huang L, Wei S and Pan D 2015 J. Phys. Chem. C 119 22797 [11] H L A I N G Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214 [12] Ananthoju B, Mohapatra J, Jangid M K, Bahadur D, Medhekar N V and Aslam M 2016 Sci. Rep. 6 35369 [13] Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R and Gershon T S 2016 J. Chem. Phys. 144 104704 [14] Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256 [15] Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712 [16] Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626 [17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [19] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [20] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748 [21] Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211 [22] Chen S, Walsh A, Luo Y, Yang J H , Gong X G and Wei S H 2010 Phys. Rev. B 82 195203 [23] Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224 [24] Yuan Z G, Cheng S Y, Xiang H J, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733 [25] Peng H and Lany S 2013 Phys. Rev. B 87 174113 [26] Bai Y, Zhang Q, Luo G, Bu Y, Zhu L, Fan L and Wang B 2017 Phys. Chem. Chem. Phys. 19 15394 [27] Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G 2015 Sol. Energy 116 125 [28] Elaheh G, Hossein M, Janos K and Claudia F 2015 J. Phys. D 48 482001 [29] Kumar M, Zhao H and Persson C 2013 Thin Solid Films 535 318 [30] Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805 [31] Zhao Z and Zhao X 2015 J. Semicond. 36 083004 [32] Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401
[1]
. [J]. 中国物理快报, 2022, 39(8): 87101-.
[2]
. [J]. 中国物理快报, 2021, 38(11): 113101-.
[3]
. [J]. 中国物理快报, 2021, 38(6): 63101-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 26101-.
[5]
. [J]. 中国物理快报, 2020, 37(10): 107505-.
[6]
. [J]. 中国物理快报, 2019, 36(4): 47301-.
[7]
. [J]. 中国物理快报, 2018, 35(4): 48501-.
[8]
. [J]. 中国物理快报, 2016, 33(10): 108105-108105.
[9]
. [J]. 中国物理快报, 2016, 33(04): 43201-043201.
[10]
. [J]. 中国物理快报, 2015, 32(02): 27302-027302.
[11]
. [J]. 中国物理快报, 2014, 31(06): 63101-063101.
[12]
. [J]. 中国物理快报, 2014, 31(2): 28102-028102.
[13]
. [J]. 中国物理快报, 2013, 30(11): 117103-117103.
[14]
. [J]. 中国物理快报, 2013, 30(10): 103102-103102.
[15]
. [J]. 中国物理快报, 2013, 30(10): 103103-103103.