Coercivity Ageing Effect on FePt Nanoparticles in Mesoporous Silica via Stepwise Synthesis Strategy
Tian-Le Wang1 , Zhi-Gang Li1,2** , Li Zhang1 , Wei-Ping Chen2 , Shang-Shen Feng2** , Wen-Wu Zhong1,2
1 College of Physics and Electronic Engineering, Taizhou University, Taizhou 3180002 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000
Abstract :FePt nanoparticles in mesoporous silica are fabricated by a simple stepwise synthesis strategy. A pre-annealing temperature-dependent coercivity-ageing effect in FePt nanoparticles is observed at room temperature. For face-centered cubic (fcc) structured FePt nanoparticles, the ageing effect is sensitive to the pre-annealing temperature, especially when the temperature is close to the phase-transition. The special magnetic behavior of FePt nanoparticles reveals that the physical properties gradually change between fcc and face-centered tetragonal structures, and will deepen our understanding of the mechanism of such magnetism in FePt nanoparticles.
收稿日期: 2017-12-25
出版日期: 2018-05-19
:
75.75.-c
(Magnetic properties of nanostructures)
81.40.-z
(Treatment of materials and its effects on microstructure, nanostructure, And properties)
81.07.Bc
(Nanocrystalline materials)
81.16.Be
(Chemical synthesis methods)
[1] Sun S H 2006 Adv. Mater. 18 393 [2] Qiu J M and Wang J P 2007 Adv. Mater. 19 1703 [3] Wang Z L, Ma H, Wang F et al 2016 Chin. Phys. Lett. 33 107501 [4] Li Z G, Wang W K, Zhang L et al 2016 Sci. Rep. 5 18601 [5] Zhang L, Zhong W W, Yu S S et al 2013 J. Alloys Compd. 560 177 [6] Fuchigami T, Kawamura R, Kitamoto Y et al 2011 Langmuir 27 2923 [7] Li Z G, Gu Y, Li Y P et al 2015 Adv. Opt. Mater. 3 931 [8] Gupta G, Patel M N, Ferrer D et al 2008 Chem. Mater. 20 5005 [9] Kang E, Jung H, Park J G et al 2011 ACS Nano 5 1018 [10] Lu L Y, Wang D, Xu X G et al 2009 J. Phys. Chem. C 113 19867 [11] Delalande M, Guinel M J F, Allard L F et al 2012 J. Phys. Chem. C 116 6866 [12] Yang J H, Jiang Y H, Liu Y et al 2013 Mater. Lett. 91 348 [13] Zhang L, Takahashi Y K, Perumal A et al 2010 J. Magn. Magn. Mater. 322 2658 [14] Schladt T D, Graf T, Kohler O et al 2012 Chem. Mater. 24 525 [15] Wang L Z, Miao J Y, Zhao Z et al 2017 Chin. Phys. Lett. 34 027501 [16] Hyun C, Lee D C, Korgel B A et al 2007 Nanotechnology 18 055704 [17] Li A R, Yu C H, Zhou Y X et al 2015 Appl. Phys. A 118 837 [18] Yan Q, Purkayastha A, Kim T et al 2006 Adv. Mater. 18 2569 [19] Yu C H, Caiulo N, Lo C C H et al 2006 Adv. Mater. 18 2312 [20] Inaba Y, Klemmer T J, Kubota Y et al 2012 Thin Solid Films 524 278 [21] Lo C C H, Tsang S C, Yu C H et al 2009 J. Appl. Phys. 105 07C101 [22] Yang Z R and Moshchalkov V V 2011 J. Appl. Phys. 109 083908 [23] Lee J S, Bodnarchuk M I, Shevchenko E V et al 2010 J. Am. Chem. Soc. 132 6382 [24] Faustini M, Capobianchi A, Varvaro G et al 2012 Chem. Mater. 24 1072
[1]
. [J]. 中国物理快报, 2021, 38(12): 127501-.
[2]
. [J]. 中国物理快报, 2020, 37(11): 117501-.
[3]
. [J]. 中国物理快报, 2020, 37(8): 87201-.
[4]
. [J]. 中国物理快报, 2019, 36(7): 76101-.
[5]
. [J]. 中国物理快报, 2019, 36(6): 67503-.
[6]
. [J]. 中国物理快报, 2018, 35(6): 67501-.
[7]
. [J]. 中国物理快报, 2018, 35(3): 37801-.
[8]
. [J]. 中国物理快报, 2017, 34(7): 76103-.
[9]
. [J]. 中国物理快报, 2016, 33(07): 76801-076801.
[10]
. [J]. 中国物理快报, 2016, 33(01): 17901-017901.
[11]
. [J]. 中国物理快报, 2015, 32(06): 66101-066101.
[12]
. [J]. 中国物理快报, 2014, 31(12): 127501-127501.
[13]
. [J]. 中国物理快报, 2014, 31(06): 67304-067304.
[14]
. [J]. 中国物理快报, 2013, 30(7): 77502-077502.
[15]
. [J]. 中国物理快报, 2012, 29(10): 106103-106103.