Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect
Ze-Qun Fang, Zhi-Lin Hou**
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641
Abstract :The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every $n$ piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.
收稿日期: 2017-12-21
出版日期: 2018-04-30
:
46.40.-f
(Vibrations and mechanical waves)
77.65.-j
(Piezoelectricity and electromechanical effects)
62.25.Jk
(Mechanical modes of vibration)
63.22.-m
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
[1] Bergamini A, Delpero T, Simoni L D, Lillo L D, Ruzzene M and Ermanni P 2014 Adv. Mater. 26 1343 [2] Hou Z, Wu F and Liu Y 2004 Solid State Commun. 130 745 [3] Wu T T, Huang Z G, Tsai T C and Wu T C 2008 Appl. Phys. Lett. 93 111902 [4] Huang P P, Yao Y W, Wu F G, Zhang X, Li J and Hu A Z 2015 Chin. Phys. B 24 054301 [5] Liu X J and Fan Y H 2013 Chin. Phys. B 22 036101 [6] Chen A L, Tong L L and Wang Y S 2015 Chin. Phys. B 24 066101 [7] Liu Z Y, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734 [8] Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134 [9] Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452 [10] Wang T, Wang H, Sheng M P and Qin Q H 2016 Chin. Phys. B 25 046301 [11] Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 25 124305 [12] Casadei F, Delpero T, Bergamini A, Ermanni P and Ruzzene M 2012 J. Appl. Phys. 112 064902 [13] Hwan O J, Kyu L I, Sik M P and Kim Y Y 2011 Appl. Phys. Lett. 99 083505 [14] Gardonio P and Casagrande D 2017 J. Sound Vib. 395 26 [15] Yan B, Wang K, Hu Z F, Wu C Y and Zhang X N 2017 Appl. Sci. 7 494 [16] Ramadan K S, Sameoto D and Evoy S 2014 Smart Mater. Struct. 23 033001 [17] Scheidler J J and Asnani V M 2017 Smart Mater. Struct. 26 035057 [18] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022 [19] Bergamini A E, Zündel M, Flores P E, Delpero T, Ruzzene M and Ermanni P 2015 J. Appl. Phys. 118 154310 [20] Degraeve S, Granger C, Dubus B, Vasseur J O, Pham Thi M and Hladky-Hennion C A 2014 J. Appl. Phys. 115 194508 [21] Chen Y Y, Hu G K and Huang G L 2016 Smart Mater. Struct. 25 105036 [22] Wang G, Cheng J Q, Chen J W and He Y Z 2017 Smart Mater. Struct. 26 025031 [23] Casadei F and Bertoldi K 2014 J. Appl. Phys. 115 034907 [24] Shi P, Chen C Q and Zou W N 2015 Ultrasonics 55 42 [25] Yeh J Y 2007 Phys. Rev. B 400 137 [26] Wang P, Casadei F, Shan S C, Weaver J C and Bertoldi K 2014 Phys. Rev. Lett. 113 014301 [27] Hou Z and Assouar B M 2015 Appl. Phys. Lett. 106 251901 [28] Huang Y, Wang H M and Chen W Q 2014 J. Appl. Phys. 115 133501 [29] Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. 59 0387 (in Chinese) [30] Kherraz N, Haumesser L, Levassort F, Benard P and Morvan B 2016 Appl. Phys. Lett. 108 093503
[1]
. [J]. 中国物理快报, 2022, 39(8): 84301-.
[2]
. [J]. 中国物理快报, 2020, 37(7): 74302-.
[3]
. [J]. 中国物理快报, 2016, 33(11): 114302-114302.
[4]
CHEN Qiong;YANG Xian-Qing**;WANG Zhen-Hui;ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect [J]. 中国物理快报, 2012, 29(1): 14501-014501.
[5]
CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media [J]. 中国物理快报, 2005, 22(10): 2601-2603.