Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT
Jiang-Ling Yang1,2 , Yun Long1 , Wei-Wei Gao1 , Lan Jin1 , Zhan-Chun Zuo1,2 , Ru-Quan Wang1,2**
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1001902 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
Abstract :$^{40}$K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low concentration (0.012%) of $^{40}$K in natural abundance of potassium, most experiments use 4–10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture $5.4\times10^{6}$ cold $^{40}$K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D$^{+}$ MOT), which is almost three orders of magnitude greater than previous results without the 2D$^{+}$ MOT. The number of the $^{40}$K atoms is sufficient for most ultra-cold $^{40}$K experiments, and our approach provides an ideal alternative for the field.
收稿日期: 2017-11-21
出版日期: 2018-02-25
[1] Philips W D, Prodan J V and Metcalf H J 1985 J. Opt. Soc. Am. B 2 1751 [2] Phillips W D 1998 Rev. Mod. Phys. 70 721 [3] Winel, D J and Itano W M 1979 Phys. Rev. A 20 1521 [4] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 [5] Davis K B, Mewes M O, Andrews M R, Van-Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [6] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687 [7] deMarco B and Jin D S 1999 Science 285 1703 [8] Loftus T, Regal C A, Ticknor C, Bohn J L and Jin D S 2002 Phys. Rev. Lett. 88 173201 [9] Holl, M, Kokkelmans S J J M F, Chiofalo M L and Walser R 2001 Phys. Rev. Lett. 87 120406 [10] Ohashi Y and Griffin A 2002 Phys. Rev. Lett. 89 130402 [11] Stajic J, Milstein J N, Chen Q J, Chiofalo M L, Holl, M J and Levin K 2004 Phys. Rev. A 69 063610 [12] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [13] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315 [14] Inouye S, Goldwin J, Olsen M L, Ticknor C, Bohn J L and Jin D S 2004 Phys. Rev. Lett. 93 183201 [15] Ferlaino F, D'Errico C, Roati G, Zaccanti M, Inguscio M, Modugno G and Simoni A 2006 Phys. Rev. A 73 040702(R) [16] Ospelkaus S, Ospelkaus C, Humbert L, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 97 120403 [17] Jee W P, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602(R) [18] Moses S A, Covey J P, Miecnikowski M T, Jin D S and Ye J 2016 Nat. Phys. 13 13 [19] DeMille D 2002 Phys. Rev. Lett. 88 067901 [20] Cataliotti F S, Cornell E A, Fort C, Inguscio M, Marin F, Prevedelli M, Ricci L and Tino G M 1998 Phys. Rev. A 57 1136 [21] DeMarco B, Rohner H and Jin D S 1999 Rev. Sci. Instrum. 70 1967 [22] Wei D, Xiong D Z, Chen H X, Wang P J, Guo L and Zhang J 2007 Chin. Phys. Lett. 24 679 [23] Wu C H, Santiago I, Jee W P, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A 84 011601(R) [24] Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631 [25] Zhang F, Long Y, Yang J L, Ma G Q, Yin J P and Wang R Q 2015 Chin. Phys. Lett. 32 123701 [26] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 1184121 [27] Taglieber M, Voigt A C, Aoki T, Hänsch T W and Dieckmann K 2008 Phys. Rev. Lett. 100 010401 [28] Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843 [29] Ridinger A, Chaudhuri S, Salez T, Fernandes D R, Bouloufa N, Dulieu O, Salomon C and Chevy F 2011 Europhys. Lett. 96 33001 [30] Ridinger A, Chaudhuri S, Salez T, Eismann U, Fernandes D R, Magalhães K, Wilkowski D, Salomon C and Chevy F 2011 Eur. Phys. J. D 65 223
[1]
. [J]. 中国物理快报, 2021, 38(10): 103701-.
[2]
. [J]. 中国物理快报, 2021, 38(5): 56701-.
[3]
. [J]. 中国物理快报, 2020, 37(10): 103201-.
[4]
. [J]. 中国物理快报, 2019, 36(9): 93701-.
[5]
. [J]. 中国物理快报, 2018, 35(12): 123701-.
[6]
. [J]. 中国物理快报, 2018, 35(8): 86701-.
[7]
. [J]. 中国物理快报, 2017, 34(6): 63702-.
[8]
. [J]. 中国物理快报, 2016, 33(07): 70602-070602.
[9]
. [J]. 中国物理快报, 2016, 33(07): 76701-076701.
[10]
. [J]. 中国物理快报, 2016, 33(06): 63201-063201.
[11]
. [J]. 中国物理快报, 2015, 32(12): 123102-123102.
[12]
. [J]. 中国物理快报, 2015, 32(12): 123701-123701.
[13]
. [J]. 中国物理快报, 2015, 32(10): 100701-100701.
[14]
. [J]. 中国物理快报, 2015, 32(10): 104210-104210.
[15]
. [J]. 中国物理快报, 2014, 31(07): 73701-073701.