Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites
Hui-Jie Yan1 , Zhi-Liang Ku2 , Xue-Feng Hu1 , Wan-Ying Zhao1 , Min-Jian Zhong1 , Qi-Biao Zhu1 , Xian Lin1 , Zuan-Ming Jin1** , Guo-Hong Ma1**
1 Department of Physics, Shanghai University, Shanghai 2004442 State Key Laboratory of Advanced Technology For Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
Abstract :We use transient terahertz photoconductivity measurements to demonstrate that upon optical excitation of CH$_{3}$NH$_{3}$PbI$_{3}$ perovskite, the hole transfer from CH$_{3}$NH$_{3}$PbI$_{3}$ into the organic hole-transporting material (HTM) Spiro-OMeTAD occurs on a sub-picosecond timescale. Second-order recombination is the dominant decay pathway at higher photo-excitation fluences as observed in neat CH$_{3}$NH$_{3}$PbI$_{3}$ films. In contrast, under similar experimental conditions, second-order recombination weakly contributes the relatively slow recombination between the electrons in the perovskite and the injected holes in HTM, as a loss mechanism at the CH$_{3}$NH$_{3}$PbI$_{3}$/Spiro-OMeTAD interface. Our results offer insights into the intrinsic photophysics of CH$_{3}$NH$_{3}$PbI$_{3}$-based perovskites with direct implications for photovoltaic devices and optoelectronic applications.
收稿日期: 2017-09-21
出版日期: 2018-01-23
:
84.60.Jt
(Photoelectric conversion)
78.47.-p
(Spectroscopy of solid state dynamics)
07.57.Ty
(Infrared spectrometers, auxiliary equipment, and techniques)
引用本文:
. [J]. 中国物理快报, 2018, 35(2): 28401-.
Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites. Chin. Phys. Lett., 2018, 35(2): 28401-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/2/028401
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I2/28401
[1] Lee M M, Teuscher J, Miyasaka T et al 2012 Science 338 643 [2] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506 [3] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 [4] Nie W, Tsai H, Asadpour R et al 2015 Science 347 522 [5] Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 21 [6] Lin Q, Armin A, Nagiri R C R et al 2015 Nat. Photon. 9 106 [7] Stranks S D, Eperon G E, Grancini G et al 2013 Science 342 341 [8] Xing G, Mathews N, Sun S et al 2013 Science 342 344 [9] Oga H, Saeki A, Ogomi Y et al 2014 J. Am. Chem. Soc. 136 13818 [10] Yamada Y, Nakamura T, Endo M et al 2014 J. Am. Chem. Soc. 136 11610 [11] Brenner T M, Egger D A and Kronik L 2016 Int. Mater. Rev. 1 15007 [12] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903 [13] Shi D, Adinolfi V, Comin R et al 2015 Science 347 519 [14] Yang Y, Yan Y, Yang M et al 2015 Nat. Commun. 6 7961 [15] Wehrenfennig C, Eperon G E, Johnston M B et al 2014 Adv. Mater. 26 1584 [16] Corani A, Li M H, Shen P S et al 2016 J. Phys. Chem. Lett. 7 1096 [17] Marchioro A, Teuscher J, Friedrich D et al 2014 Nat. Photon. 8 250 [18] Yang Y, Yang M, Li Z et al 2015 J. Phys. Chem. Lett. 6 4688 [19] Manser J S and Kamat P V 2014 Nat. Photon. 8 737 [20] Brauer J C, Lee Y, Nazeeruddin M K et al 2016 J. Mater. Chem. C 4 5922 [21] Wehrenfennig C, Liu M, Snaith H J et al 2014 J. Phys. Chem. Lett. 5 1300 [22] Deschler F, Price M, Pathak S et al 2014 J. Phys. Chem. Lett. 5 1421 [23] Fang H, Wang F, Adjokatse S et al 2016 Light: Sci. Appl. 5 e16056 [24] Lang L, Yang J H, Liu H R et al 2014 Phys. Lett. A 378 290 [25] Ulbricht R, Hendry E, Shan J et al 2011 Rev. Mod. Phys. 83 543 [26] Milot R L, Eperon G E, Snaith H J et al 2015 Adv. Funct. Mater. 25 6218 [27] Chan L O V, Salim T, Kadro J et al 2015 Nat. Commun. 6 7903 [28] Wehrenfennig C, Liu M, Snaith H J et al 2014 Energy Environ. Sci. 7 2269 [29] Valverde-Chávez D A, Jr. Ponseca C S, Stoumpos C C et al 2015 Energy Environ. Sci. 8 3700 [30] Jr. Ponseca C S, Savenije T J, Abdellah M et al 2014 J. Am. Chem. Soc. 136 5189 [31] Lui K P H and Hegmann F A 2001 Appl. Phys. Lett. 78 3478 [32] Yettapu G R, Talukdar D, Sarkar S et al 2016 Nano Lett. 16 4838 [33] Jr. Ponseca C S, Hutter E M, Piatkowski P et al 2015 J. Am. Chem. Soc. 137 16043 [34] Snaith H J and Grätzel M 2007 Adv. Mater. 19 3643 [35] Samrana K, Mohammad K N, Michael G et al 2014 Angew. Chem. Int. Ed. 53 2812 [36] Jin Z, Gehrig D, Dyer-Smith C et al 2014 J. Phys. Chem. Lett. 5 3662 [37] Dicker G, Haas M P and Siebbeles L D A 2005 Phys. Rev. B 71 155204 [38] Sheng C, Zhang C, Zhai Y et al 2015 Phys. Rev. Lett. 114 116601 [39] D'Innocenzo V, Grancini G, Alcocer M J et al 2014 Nat. Commun. 5 3586 [40] de Quilettes D W, Vorpahl S M, Stranks S D et al 2015 Science 348 683 [41] Han X W, Hou L, Yang L et al 2016 Chin. Phys. Lett. 33 120701 [42] Fan Z F, Tan Z Y, Wan W J et al 2017 Acta Phys. Sin. 66 087801 (in Chinese)
[1]
. [J]. 中国物理快报, 2021, 38(10): 107801-.
[2]
. [J]. 中国物理快报, 2020, 37(10): 108401-.
[3]
. [J]. 中国物理快报, 2019, 36(5): 57201-.
[4]
. [J]. 中国物理快报, 2019, 36(2): 28401-.
[5]
. [J]. 中国物理快报, 2018, 35(4): 46101-.
[6]
. [J]. 中国物理快报, 2017, 34(7): 76106-.
[7]
. [J]. 中国物理快报, 2017, 34(6): 68801-.
[8]
. [J]. 中国物理快报, 2017, 34(2): 26101-026101.
[9]
. [J]. 中国物理快报, 2017, 34(2): 28201-028201.
[10]
. [J]. 中国物理快报, 2017, 34(2): 28801-028801.
[11]
. [J]. 中国物理快报, 2016, 33(05): 56102-056102.
[12]
. [J]. 中国物理快报, 2016, 33(05): 58801-058801.
[13]
. [J]. 中国物理快报, 2015, 32(12): 128401-128401.
[14]
. [J]. 中国物理快报, 2015, 32(11): 118401-118401.
[15]
. [J]. 中国物理快报, 2015, 32(11): 114101-114101.