An Isotropic Empirical Intermolecular Potential for Solid H$_{2}$ and D$_{2}$: A Classical Molecular Calculation
Li Yang1** , Hui Liu1 , Hui-Ling Zhou1 , Qing-Qiang Sun1,2 , Shu-Ming Peng3 , Xing-Gui Long3 , Xiao-Song Zhou3 , Xiao-Tao Zu1 , Fei Gao4
1 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 6100542 School of Science, Huaihai Institute of Technology, Lianyungang 2220053 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 6219004 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 USA
Abstract :We develop an isotropic empirical potential for molecular hydrogen (H$_{2}$) and deuterium (D$_{2}$) by fitting to solid-state data, which is appropriate for classical molecular dynamics (CMD) approach. Based on the prior isotropic intermolecular potential used in self-consistent phonon approximation, a zero-point energy term and an embedded energy term are introduced to describe the H$_{2}$–H$_{2}$ and D$_{2}$–D$_{2}$ interactions in CMD simulations. The structure, cohesive energy and elastic properties of solid H$_{2}$ (D$_{2})$ are used as the fitting database. The present method is tested by calculating the melting point of solid H$_{2}$, and the pressure and bulk elastic modulus as a function of volume. The developed potentials well reproduce many properties of solid H$_{2}$ and D$_{2}$.
收稿日期: 2017-08-03
出版日期: 2017-11-24
:
34.20.Gj
(Intermolecular and atom-molecule potentials and forces)
02.70.Ns
(Molecular dynamics and particle methods)
62.20.de
(Elastic moduli)
61.50.Lt
(Crystal binding; cohesive energy)
引用本文:
. [J]. 中国物理快报, 2017, 34(12): 123401-.
Li Yang , Hui Liu, Hui-Ling Zhou, Qing-Qiang Sun, Shu-Ming Peng, Xing-Gui Long, Xiao-Song Zhou, Xiao-Tao Zu, Fei Gao. An Isotropic Empirical Intermolecular Potential for Solid H$_{2}$ and D$_{2}$: A Classical Molecular Calculation. Chin. Phys. Lett., 2017, 34(12): 123401-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/12/123401
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I12/123401
[1] Hurricane O A, Callahan D A and Casey D T 2014 Nature 506 343 [2] Ye Y T, Yang L, Yang T L, Nie J L, Peng S M, Long X G, Zu X T and Du J C 2015 Eur. Phys. J. B 88 161 [3] Sun Q Q, Ye Y T, Yang T L, Yang L, Peng S M, Long X G, Zhou X S, Zu X T and Du J C 2015 Eur. Phys. J. B 88 332 [4] Guerrero C, Cuesta-Lopez S and Perlado J M 2013 EPJ. Web Conf. 59 16004 [5] Bruce T A 1972 Phys. Rev. B 5 4170 [6] Silvera I F and Goldman V V 1978 J. Chem. Phys. 69 4209 [7] Silvera I F 1980 Rev. Mod. Phys. 52 393 [8] Curzon A E and Mascall A J 1965 Brit. J. Appl. Phys. 16 1301 [9] Gao F, Deng H Q, Heinisch H L and Kurtz R J 2011 J. Nucl. Mater. 418 115 [10] Brenner D W 1990 Phys. Rev. B 42 9458 Matsubara K, Sugihara K and Tsuzuku T 1992 Phys. Rev. B 46 1948 [11] Gao F, Bacon D J, Flewitt P E J and Lewis T A 1997 J. Nucl. Mater. 249 77 [12] Goldman V V 1977 J. Low Temp. Phys. 26 203 [13] Morn M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press) [14] Nielsen M 1973 Phys. Rev. B 7 1626 [15] Wanner R and Meyer H 1973 J. Low Temp. Phys. 11 715 [16] Ebner C and Sung C C 1972 Phys. Rev. A 5 2625 [17] https://www.webelements.com/hydrogen/ [18] Felsteiner J 1965 Phys. Rev. Lett. 15 1025 [19] Schuch A F and Mills R L 1966 Phys. Rev. Lett. 16 616 [20] Li X C, Shu X L, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12 [21] Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 Phys. Rev. B 80 054104 [22] Goldman V V 1979 J. Low Temp. Phys. 36 521 [23] Anderson M S and Swenson C A 1974 Phys. Rev. B 10 5184 [24] Silvera I F, Driessen A and De Waal J A 1978 Phys. Lett. A 68 207 [25] Stewart J W 1956 J. Chem. Phys. Solids 1 146
[1]
. [J]. 中国物理快报, 2022, 39(11): 113301-.
[2]
. [J]. 中国物理快报, 2022, 39(8): 83401-.
[3]
SONG Hua-Jie;HUANG Feng-Lei**
. Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles [J]. 中国物理快报, 2011, 28(9): 96103-096103.
[4]
O. Bayrak**;A. Soylu;I. Boztosun
. Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues [J]. 中国物理快报, 2011, 28(4): 40304-040304.
[5]
FENG Yu-Liang;ZHANG Yuan;JI Bing-Yu;MU Wen-Zhi
. Micro-acting Force in Boundary Layer in Low-Permeability Porous Media [J]. 中国物理快报, 2011, 28(2): 24703-024703.
[6]
A. Soylu;O. Bayrak;I. Boztosun. Exact Solutions of Klein--Gordon Equation with Scalar and Vector Rosen--Morse-Type Potentials [J]. 中国物理快报, 2008, 25(8): 2754-2757.
[7]
ZHANG Ji-Cheng;SONG Kao-Ping;LIU Li;YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis [J]. 中国物理快报, 2008, 25(5): 1750-1752.
[8]
YANG Er-Long;SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology [J]. 中国物理快报, 2006, 23(9): 2491-2493.
[9]
CHENG Xiao-Man;YAO Su-Wei;LI Cheng-Quan;MANAKA Takaaki;IWAMOTO Mitsumasa. Measurement of Surface Potential at Metal/Organic-Material Interfaces by Electro-Absorption Method [J]. 中国物理快报, 2004, 21(10): 2026-2028.
[10]
WANG De-Hua;DING Shi-Liang;. A New Model Potential Acting on the Excited Electron Within Molecules: Application to Calculate the Recurrence Spectra of Excited H2 Molecules in Strong External Fields [J]. 中国物理快报, 2004, 21(7): 1189-1194.
[11]
BAI Yu-Lin;CHENG Xiao-Hong;CHEN Xiang-Rong;YANG Xiang-Dong;ZHU Jun. Intermolecular Interaction Potentials of CH4 -Ne Complex Calculated with Local Density Approximation Methods
[J]. 中国物理快报, 2004, 21(6): 1048-1050.