Fabrication of High-Haze Flexible Transparent Conductive PMMA Films Embedded with Silver Nanowires
Lu Zhong1,2 , Wei Xu2** , Mei-Yi Yao1 , Wen-Feng Shen2 , Feng Xu2 , Wei-Jie Song2,3**
1 School of Material Science and Engineering, Shanghai University, Shanghai 2004442 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 3152013 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164
Abstract :High-haze flexible transparent conductive polymethyl methacrylate (PMMA) films embedded with silver nanowires (AgNWs) are fabricated by a low-cost and simple process. The volatilization rate of the solvent in PMMA solution affects the surface microstructures and morphologies, which results in different haze factors of the composite films. The areal mass density of AgNW shows a significant influence on the optical and electrical properties of composite films. The AgNW/PMMA transparent conductive films with the sheet resistance of 5.5 $\Omega$sq$^{-1}$ exhibit an excellent performance with a high haze factor of 81.0% at 550 nm.
收稿日期: 2017-05-16
出版日期: 2017-10-25
[1] Lee H, Lee K, Park J T, Kim W C and Lee H 2014 Adv. Funct. Mater. 24 3276 [2] Wang H H 2012 Physics 41 783 (in Chinese) [3] Cui F, Yu Y, Dou L T, Sun J W, Yang Q, Schildknecht C, Schierle-Arndt K and Yang P D 2015 Nano Lett. 15 7610 [4] Lee S J, Kim Y H, Kim J K, Baik H, Park J H, Lee J, Nam J, Park J H, Lee T W, Yi G R and Cho J H 2014 Nanoscale 6 11828 [5] Liu Z, Xu J, Chen D and Shen G Z 2015 Chem. Soc. Rev. 44 161 [6] Liu J M, Chen X L, Fang J, Zhao Y and Zhang X D 2015 Sol. Energ. Mater. Sollar Cells 138 41 [7] Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F and Tang J X 2015 Adv. Mater. 27 1035 [8] Wang K X, Yu Z F, Liu V, Cui Y and Fan S H 2012 Nano Lett. 12 1616 [9] Krc J, Lipovsek B, Bokalic M, Campa A, Oyama T, Kambe M, Matsui T, Sai H, Kondo M and Topic M 2010 Thin Solid Films 518 3054 [10] Wooh S, Yoon H, Jung J H, Lee Y G, Koh J H, Lee B, Kang Y S and Char K 2013 Adv. Mater. 25 3111 [11] Chen X L, Li L N, Wang F, Ni J, Geng X H, Zhang X D and Zhao Y 2012 Thin Solid Films 520 5392 [12] Kim D S, Park J H, Shin B K, Moon K J, Son M, Ham M H, Lee W and Myoung J M 2012 Appl. Surf. Sci. 259 596 [13] Kou P F, Yang L, Chang C and He S L 2017 Sci. Rep. 7 42052 [14] Shen Y and Yao R H 2016 Chin. Phys. Lett. 33 037801 [15] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676 [16] Fang Z Y, Lu Y W, Fan L R and Zhu X 2010 Plasmonics 5 207 [17] Woo J S, Sin D H, Kim H, Jang J I, Kim H Y, Lee G W, Cho K, Park S Y and Han J T 2016 Nanoscale 8 6693 [18] Yao S S, Myers A, Malhotra A, Lin F, Bozkurt A, Muth J F and Zhu Y 2017 Adv. Health. Mater. 6 1601159 [19] Huang Q J, Shen W F, Fang X Z, Chen G F, Yang Y, Huang J H, Tan R Q and Song W J 2015 ACS Appl. Mater. Interfaces 7 4299 [20] Lagrange M, Langley D P, Giusti G, Jiménez C, Bréchet Y and Bellet D 2015 Nanoscale 7 17410 [21] Kang S, Kim T, Cho S, Lee Y, Choe A, Walker B, Ko S J, Kim J Y and Ko H 2015 Nano Lett. 15 7933 [22] Han J, Yuan S, Liu L, Qiu X F, Gong H B, Yang X P, Li C C, Hao Y F and Cao B Q 2015 J. Mater. Chem. A 3 5375 [23] Preston C, Xu Y L, Han X G, Munday J N and Hu L B 2013 Nano Res. 6 461 [24] Van Deelen J, Klerk L A, Barink M, Rendering H, Voorthuijzen P and Hovestad A 2014 Thin Solid Films 555 159
[1]
. [J]. 中国物理快报, 2022, 39(5): 58101-058101.
[2]
. [J]. 中国物理快报, 2017, 34(2): 26201-026201.
[3]
. [J]. 中国物理快报, 2016, 33(07): 78102-078102.
[4]
. [J]. 中国物理快报, 2016, 33(06): 68101-068101.
[5]
. [J]. 中国物理快报, 2015, 32(07): 77804-077804.
[6]
. [J]. 中国物理快报, 2015, 32(5): 58102-058102.
[7]
. [J]. 中国物理快报, 2014, 31(07): 78103-078103.
[8]
. [J]. 中国物理快报, 2013, 30(10): 108102-108102.
[9]
. [J]. 中国物理快报, 2013, 30(8): 88103-088103.
[10]
. [J]. Chin. Phys. Lett., 2012, 29(11): 118103-118103.
[11]
YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells [J]. 中国物理快报, 2012, 29(7): 78501-078501.
[12]
FENG Qiu-Ju**;JIANG Jun-Yan;TAO Peng-Cheng;LIU Shuang;XU Rui-Zhuo;LI Meng-Ke;SUN Jing-Chang
. The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods [J]. 中国物理快报, 2011, 28(10): 108103-108103.
[13]
WEI Ang;WANG Zhao;PAN Liu-Hua;LI Wei-Wei;XIONG Li;DONG Xiao-Chen**;HUANG Wei**
. Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorodswei-huang@njupt.edu.cn [J]. 中国物理快报, 2011, 28(8): 80702-080702.
[14]
LIU Zhan-Hui;XIU Xiang-Qian**;YAN Huai-Yue;ZHANG Rong;XIE Zi-Li;HAN Ping;SHI Yi;ZHENG You-Dou
. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy [J]. 中国物理快报, 2011, 28(5): 57804-057804.
[15]
BIAN Fei;WANG Rui;YANG Huai-Xin;ZHANG Xin-Zheng;LI Jian-Qi;XU Hong-Xing;XU Jing-Jun;ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization [J]. 中国物理快报, 2010, 27(8): 88101-088101.