1Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2University of Chinese Academy of Sciences, Beijing 100049
Abstract:A novel high-$\kappa$ Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$ nanolaminate charge trapping memory capacitor structure based on SiGe substrates with low interface densities is successfully fabricated and investigated. The memory capacitor exhibits excellent program-erasable characteristics. A large memory window of $\sim $4 V, a small leakage current density of $\sim $2 $\times$ 10$^{-6}$ Acm$^{-2}$ at a gate voltage of 7 V, a high charge trapping density of $1.42\times 10^{13}$ cm$^{-2}$ at a working voltage of $\pm$10 V and good retention characteristics are observed. Furthermore, the programming ($\Delta V_{\rm FB}=2.8$ V at 10 V for 10 μs) and erasing speeds ($\Delta V_{\rm FB}=-1.7$ V at $-$10 V for 10 μs) of the fabricated capacitor based on SiGe substrates are significantly improved as compared with counterparts reported earlier. It is concluded that the high-$\kappa$ Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$ nanolaminate charge trapping capacitor structure based on SiGe substrates is a promising candidate for future nano-scaled nonvolatile flash memory applications.