Collective Flows of $^{16}$O+$^{16}$O Collisions with $\alpha$-Clustering Configurations
Chen-Chen Guo1 , Wan-Bing He2 , Yu-Gang Ma1,3,4**
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002 Institute of Modern Physics, Fudan University, Shanghai 2004333 University of Chinese Academy of Sciences, Beijing 1000494 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031
Abstract :The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an extended quantum molecular dynamics model, four $\alpha$-clustering (linear chain, kite, square and tetrahedron) configurations of $^{16}$O are employed in the initialization, $^{16}$O+$^{16}$O around the Fermi energy (40–60 MeV/nucleon) with impact parameter 1–3 fm are simulated, and the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different $\alpha$-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at the Fermi energy can be taken as a useful way to study cluster configuration in light nuclei.
收稿日期: 2017-06-09
出版日期: 2017-08-15
:
21.65.Cd
(Asymmetric matter, neutron matter)
21.65.Mn
(Equations of state of nuclear matter)
25.70.-z
(Low and intermediate energy heavy-ion reactions)
[1] Oertzen W, Freer M and Kanada-Eno Y 2006 Phys. Rep. 432 43 [2] Freer M 2007 Rep. Prog. Phys. 70 2149 [3] Cao X G and Ma Y G 2015 Chin. Sci. Bull. 60 1557 [4] Epelbaum E, Krebs H, Lee D and Meissner U G 2011 Phys. Rev. Lett. 106 192501 [5] Epelbaum E, Krebs H, Lahde T A, Lee D and Meissner U G 2012 Phys. Rev. Lett. 109 252501 [6] Feldmeier H 1990 Nucl. Phys. A 515 147 [7] Chernykh M, Feldmeier H, Neff T, Neumann-Cosel P and Richter A 2007 Phys. Rev. Lett. 98 032501 [8] Kanada-En'yo Y, Kimura M and Ono A 2012 Prog. Theor. Exp. Phys. 2012 01A202 [9] Kanada-En'yo Y et al 2015 Nucl. Sci. Tech. 26 S20501 [10] Ma C W et al 2016 Nucl. Sci. Tech. 27 111 [11] Ma C W et al 2015 Chin. Phys. Lett. 32 072501 [12] He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2014 Phys. Rev. Lett. 113 032506 [13] He W B, Ma Y G and Zhang Q G 2016 Phys. Rev. C 94 014301 [14] Huang B S, Ma Y G and He W B 2017 Phys. Rev. C 95 034606 Huang B S, Ma Y G and He W B 2017 Eur. Phys. J. A 53 119 [15] He W B, Ma Y G, Cao X G et al 2014 Nucl. Tech. 37 100511 (in Chinese) [16] Wang S S, Cao X G, Zhang T L et al 2015 Nucl. Phys. Rev. 32 24 [17] Halcrow C J, King C and Manton N S 2017 Phys. Rev. C 95 031303 [18] Bijker R 2010 AIP Conf. Proc. 1323 28 [19] Zhou E F, Yao J M, Li Z P, Meng J and Ring P 2016 Phys. Lett. B 753 227 [20] Ichikawa T, Maruhn J A, Itagaki N and Ohkubo S 2011 Phys. Rev. Lett. 107 112501 [21] Suhara T, Funaki Y, Zhou B, Horiuchi H and Tohsaki A 2014 Phys. Rev. Lett. 112 062501 [22] Bijker R and Iachello F 2014 Phys. Rev. Lett. 112 152501 [23] Epelbaum E et al 2014 Phys. Rev. Lett. 112 102501 [24] Tian Z Y, Ye Y L, Li Z H et al 2016 Chin. Phys. C 40 111001 [25] Broniowski W and Arriola W R 2014 Phys. Rev. Lett. 112 112501 [26] Zhang S, Ma Y G, Chen J H et al 2017 Phys. Rev. C 95 064904 [27] Bozek P, Broniowski W, Ruiz A E and Rybczynski M 2014 Phys. Rev. C 90 064902 [28] Reisdorf W and Ritter H G 1997 Annu. Rev. Nucl. Part. Sci. 47 663 [29] Stoecker H 2005 Nucl. Phys. A 750 121 [30] Kumar S and Ma Y G 2013 Nucl. Sci. Tech. 24 050509 [31] Ko C M, Chen L W, Vincenzo G et al 2013 Nucl. Sci. Tech. 24 050525 [32] Ma Y G et al 1993 Phys. Rev. C 48 R1492 Ma Y G et al 1995 Phys. Rev. C 51 1029 [33] Yan T Z, Ma Y G, Cai X Z et al 2006 Phys. Lett. B 638 50 [34] Chen J H, Ma Y G, Ma G L et al 2006 Phys. Rev. C 74 064902 [35] Han L X, Ma G L, Ma Y G et al 2011 Phys. Rev. C 84 064907 [36] Xie W J and Feng Z Q 2015 Chin. Phys. Lett. 32 122502 [37] Zhang F 2016 Chin. Phys. Lett. 33 012501 [38] Zhou C L, Ma Y G, Fang D Q et al 2014 Phys. Rev. C 90 057601 [39] Song H C, Zhou Y and Gajdoov K 2017 Nucl. Sci. Tech. 28 99 [40] Xu Z Y et al 2017 Chin. Phys. Lett. 34 062501 [41] Wang T T et al 2015 Chin. Phys. Lett. 32 062501 [42] Aichelin J 1991 Phys. Rep. 202 233 [43] Maruyama T, Niita K and Iwamoto A 1996 Phys. Rev. C 53 297 [44] Ono A and Horiuchi H 2004 Prog. Part. Nucl. Phys. 53 501 [45] Huang B S and Ma Y G 2017 Chin. Phys. Lett. 34 072401 [46] Wu H L et al 2015 Nucl. Sci. Tech. 26 050103 [47] Andronic A, Lukasik J, Reisdorf W et al 2006 Eur. Phys. J. A 30 31 [48] Li Q F, Shen C W, Guo C C et al 2011 Phys. Rev. C 83 044617
[1]
. [J]. 中国物理快报, 2016, 33(10): 102101-102101.
[2]
. [J]. 中国物理快报, 2016, 33(01): 12501-012501.
[3]
. [J]. 中国物理快报, 2013, 30(5): 52501-052501.
[4]
. [J]. Chin. Phys. Lett., 2012, 29(12): 122102-122102.
[5]
. [J]. 中国物理快报, 2012, 29(9): 92101-092101.
[6]
MA Chun-Wang, PU Jie, WANG Shan-Shan, WEI Hui-Ling. The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48 Ca and 58,64 Ni Projectile Fragmentation [J]. 中国物理快报, 2012, 29(6): 62101-062101.
[7]
LI Zeng-Hua, ZUO Wei. Symmetry Potential and Effective Mass with Consistent Three-Body Force [J]. 中国物理快报, 2012, 29(6): 62104-062104.
[8]
GAN Sheng-Xin,ZUO Wei**,U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach [J]. 中国物理快报, 2012, 29(4): 42102-042102.
[9]
LI Zeng-Hua;**;ZUO Wei;GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter [J]. 中国物理快报, 2012, 29(1): 12102-012102.