In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy
Pai Xiang1 , Ji-Shan Liu1,2,3** , Ming-Ying Li1 , Hai-Feng Yang1 , Zheng-Tai Liu1 , Cong-Cong Fan1 , Da-Wei Shen 1,2,3** , Zhen Wang1,2,3 , Zhi Liu1,2,3,4
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 2000502 CAS Center for Excellence in Superconducting Electronics, Shanghai 2000503 CAS-Shanghai Science Research Center, Shanghai 2012034 Division of Photon Science and Condensed Matter Physics, School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031
Abstract :High-quality single crystalline niobium films are grown on a-plane sapphire in molecular beam epitaxy. The film is single crystalline with a (110) orientation, and both the rocking curve and the reflection high-energy electron diffraction pattern demonstrate its high-quality with an atomically smooth surface. By in situ study of its electronic structure, a rather weak electron-electron correlation effect is demonstrated experimentally in this $4d$ transition metal. Moreover, a kink structure is observed in the electronic structure, which may result from electron-phonon interaction and it might contribute to the superconductivity. Our results help to understand the properties of niobium deeply.
收稿日期: 2017-03-13
出版日期: 2017-06-23
:
74.70.Xa
(Pnictides and chalcogenides)
74.25.Jb
(Electronic structure (photoemission, etc.))
79.60.-i
(Photoemission and photoelectron spectra)
引用本文:
. [J]. 中国物理快报, 2017, 34(7): 77402-.
Pai Xiang, Ji-Shan Liu, Ming-Ying Li, Hai-Feng Yang, Zheng-Tai Liu, Cong-Cong Fan, Da-Wei Shen , Zhen Wang, Zhi Liu. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy. Chin. Phys. Lett., 2017, 34(7): 77402-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/7/077402
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I7/77402
[1] Hawkins G and Clarke J 1976 J. Appl. Phys. 47 1616 [2] Fawcett E, Reed W A and Soden R R 1967 Phys. Rev. 159 533 [3] Burgemeister E A, Bosschieter J E and Dokoupil Z 1974 Phys. Lett. A 47 27 [4] Karim D P, Ketterson J B and Crabtree G W 1978 J. Low Temp. Phys. 30 389 [5] Mattheiss L F 1970 Phys. Rev. B 1 373 [6] Marksteiner P, Weinberger P, Neckel A et al 1986 Phys. Rev. B 33 6709 [7] Li Y, An B, Fukuyama S et al 2002 Mater. Characterization 48 163 [8] Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials and the LAPW Method (Berlin: Springer-Verlag) 2nd edn p 1C134 [9] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 {in WIEN2K, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties } (Austria: Technical Univievsity Wien) [10] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [11] Wildes A R, Mayer J and Theis-Br?hl K 2001 Thin Solid Films 401 7–34 [12] Ward R C C, Grier E J and Petford-Long A K 2003 J. Mater. Sci.: Mater. Electron. 14 533 [13] Li Y S, Zheng M, Mulcahy B et al 2011 Appl. Phys. Lett. 99 042507 [14] Jin Y R, Song X H and Zhang D L 2009 Sci. Chin. Ser. G: Phys. Mech. Astron. 52 1289 [15] Yoshii K, Yamamoto H, Saiki K et al 1995 Phys. Rev. B 52 13570 [16] Krishnan M, Valderrama E, Bures B et al 2011 Supercond. Sci. Technol. 24 115002 [17] Splett J D, Vecchia D F and Goodrich L F 2011 J. Res. Natl. Inst. Stand. Technol. 116 489 [18] Anderson J R, Mccaffrey J W and Schirber J E 1973 Phys. Rev. B 7 5115 [19] Chakraborty B, Pickett W E and Allen P B 1976 Phys. Rev. B 14 3227 [20] Miller J N, Lindau I, Stefan P M et al 1982 J. Appl. Phys. 53 3267 [21] Chainani A, Yokoya T, Kiss T et al 2000 Phys. Rev. Lett. 85 1966 [22] Liu M, Chang C Z, Zhang Z et al 2011 Phys. Rev. B 83 165440 [23] Rahn D J, Hellmann S, Kall?ne M et al 2012 Phys. Rev. B 85 224532 [24] Shai D E, Adamo C, Shen D W et al 2013 Phys. Rev. Lett. 110 087004 [25] Byczuk K, Kollar M, Held K et al 2007 Nat. Phys. 3 168 [26] Rotenberg E, Schaefer J and Kevan S D 2000 Phys. Rev. Lett. 84 2925 [27] Valla T, Fedorov A V, Johnson P D et al 1999 Phys. Rev. Lett. 83 2085
[1]
. [J]. 中国物理快报, 2023, 40(1): 17401-.
[2]
. [J]. 中国物理快报, 2022, 39(12): 127401-127401.
[3]
. [J]. 中国物理快报, 2022, 39(12): 127402-127402.
[4]
. [J]. 中国物理快报, 2022, 39(5): 57302-057302.
[5]
. [J]. 中国物理快报, 2021, 38(11): 116801-.
[6]
. [J]. 中国物理快报, 2021, 38(8): 87401-.
[7]
. [J]. 中国物理快报, 2021, 38(7): 77302-.
[8]
. [J]. 中国物理快报, 2021, 38(5): 57401-057401.
[9]
. [J]. 中国物理快报, 2021, 38(3): 37401-.
[10]
. [J]. 中国物理快报, 2020, 37(8): 87401-087401.
[11]
. [J]. 中国物理快报, 2020, 37(8): 87301-.
[12]
. [J]. 中国物理快报, 2019, 36(12): 127401-.
[13]
. [J]. 中国物理快报, 2019, 36(10): 107403-.
[14]
. [J]. 中国物理快报, 2019, 36(7): 77402-077402.
[15]
. [J]. 中国物理快报, 2019, 36(5): 56801-.