Jeans Gravitational Instability with $\kappa $-Deformed Kaniadakis Distribution
Hui Chen1** , Shi-Xuan Zhang1,2 , San-Qiu Liu1
1 Department of Physics, Nanchang University, Nanchang 3300472 School of Science, East China University of Technology, Nanchang 330013
Abstract :The Jeans instabilities in an unmagnetized, collisionless, isotropic self-gravitating matter system are investigated in the context of $\kappa$-deformed Kaniadakis distribution based on kinetic theory. The result shows that both the growth rates and critical wave numbers of Jeans instability are lower in the $\kappa$-deformed Kaniadakis distributed self-gravitating matter systems than the Maxwellian case. The standard Jeans instability for a Maxwellian case is recovered under the limitation $\kappa=0$.
收稿日期: 2016-12-27
出版日期: 2017-06-23
:
51.10.+y
(Kinetic and transport theory of gases)
05.20.-y
(Classical statistical mechanics)
[1] Jeans J H 1929 Astronomy and Cosmogony (Cambridge: Cambridge University Press) [2] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton: Princeton Univeristy Press) [3] Trigger S A, Ershkovich A I, van Heijst G J F and Schram P P J M 2004 Phys. Rev. E 69 066403 [4] Shan S A and Mushtaq A 2011 Chin. Phys. Lett. 28 075204 [5] Pandey B P, Avinash K and Dwivedi C B 1994 Phys. Rev. E 49 5599 [6] Guo Z R, Yang Z Q, Yin B X and Sun M Z 2010 Chin. Phys. B 19 115203 [7] Mace R L, Verheest F and Hellberg M A 1998 Phys. Lett. A 237 146 [8] Lima J A S, Siliva R and Santos J 2002 Astron. Astrophys. 396 309 [9] Du J L 2004 Phys. Lett. A 320 347 [10] Qian Y Z, Chen H and Liu S Q 2014 Phys. Plasmas 21 113703 [11] Abreu E M C, Neto J A, Barboza E M and Nunes R C 2016 Europhys. Lett. 114 55001 [12] Kaniadakis G 2001 Physica A 296 405 [13] Beck C and Cohen E G D 2003 Physica A 322 267 [14] Ourabah K, Gougam L A and Tribeche M 2015 Phys. Rev. E 91 012133 [15] Ourabah K and Tribeche M 2014 Phys. Rev. E 89 062130 [16] Ourabah K, Hamici-Bendimerad A H and Tribeche M 2015 Phys. Scr. 90 045101 [17] Kaniadakis G 2002 Phys. Rev. E 66 056125 [18] Teweldeberhan A M, Miller H G and Tegen G 2003 Int. J. Mod. Phys. E 12 669 [19] Rossani A and Scarfone A M 2004 J. Phys. A 37 4955 [20] Biro T S and Kaniadakis G 2006 Eur. Phys. J. B 50 3 [21] Casas G A, Nobre F D and Curado E M F 2012 Phys. Rev. E 86 061136 [22] Clementi F, Gallegati M, Kaniadakis G and Landini S 2016 Eur. Phys. J. Spec. Top. 225 1959 [23] Gougam L A and Tribeche M 2016 Phys. Plasmas 23 014501 [24] Li X Q 2003 Collpse dynamics of Plasmons (Beijing: China Science and Technology Publishing) (in Chinese) [25] Tsytovich V N, Ivlev A V, Burkert A and Morfill G E 2013 Astrophys. J. 780 131
[1]
. [J]. 中国物理快报, 2014, 31(09): 95205-095205.
[2]
CHEN Yan-Pei, Pierre Evesque, HOU Mei-Ying. Breakdown of Energy Equipartition in Vibro-Fluidized Granular Media in Micro-Gravity [J]. 中国物理快报, 2012, 29(7): 74501-074501.
[3]
CHEN Shi-Qiang, WANG Hai-Xing** . Transport Properties of Lithium Plasma [J]. 中国物理快报, 2012, 29(2): 25202-025202.
[4]
ZHANG Jia-Guo;ZHANG Guo-Hui;CHEN Jin-Xiang. Measurement of Electron-Drift Velocity in Ar+CH4 Mixtures Using Double-Grid Method [J]. 中国物理快报, 2009, 26(11): 112901-112901.
[5]
SUN Xi-Ming; DONG Yu-Jie. Analysis of Stability for Gas-Kinetic Non-Local Traffic Model [J]. 中国物理快报, 2006, 23(9): 2494-2497.
[6]
LI He-Ping;CHEN Xi. Diffusion in Two-Temperature Partially Ionized Gases [J]. 中国物理快报, 2001, 18(4): 547-549.
[7]
CHEN Ji-Sheng;ZHENG Xiao-Ping;LI Jia-Rong. Nonlinear Permittivity Including Non-Abelian Self-Interaction of Plasmons in Quark-Gluon Plasma [J]. 中国物理快报, 2000, 17(10): 714-716.
[8]
ZHENG Xiao-ping;LI Jia-rong. Colored Particle Acceleration by Fluctuations in Quark-Gluon Plasma [J]. 中国物理快报, 1998, 15(2): 83-85.