Resonance Analyses for a Noisy Coupled Brusselator Model
Pei-Rong Guo1 , Hai-Yan Wang2** , Jin-Zhong Ma1
1 School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072
2 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072
Abstract :We discuss the dynamical behavior of a chemical network arising from the coupling of two Brusselators established by the relationship between products and substrates. Our interest is to investigate the coherence resonance (CR) phenomena caused by noise for a coupled Brusselator model in the vicinity of the Hopf bifurcation, which can be determined by the signal-to-noise ratio (SNR). The CR in two coupled Brusselators will be considered in the presence of the Gaussian colored noise and two uncorrelated Gaussian white noises. Simulation results show that, for the case of single noise, the SNR characterizing the degree of temporal regularity of coupled model reaches a maximum value at some optimal noise levels, and the noise intensity can enhance the CR phenomena of both subsystems with a similar trend but in different resonance degrees. Meanwhile, effects of noise intensities on CR of the second subsystem are opposite for the systems under two uncorrelated Gaussian white noises. Moreover, we find that CR might be a general phenomenon in coupled systems.
收稿日期: 2017-01-05
出版日期: 2017-06-23
:
02.50.-r
(Probability theory, stochastic processes, and statistics)
43.60.Cg
(Statistical properties of signals and noise)
[1] Zhou B C and Xu W 2007 Acta Phys. Sin. 56 10 (in Chinese) [2] Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 1 [3] Xu Y, Wu J, Du L and Yang H 2016 Chaos Solitons Fractals 92 91 [4] Liu K H and Jin Y F 2013 Physica A 392 5283 [5] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807 [6] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 5 [7] Dey S, Das D and Parmananda P 2011 Chaos 21 033124 [8] Ning W L, Zhang Z Z, Zeng S Y, Luo X S, Hu J L, Zeng S W, Qiu Y and Wu H S 2012 Chin. Phys. B 21 2 [9] Lee C Y, Choi W, Han J H and Strano M S 2010 Science 329 1320 [10] Liu Z H and Lai Y C 2001 Phys. Rev. Lett. 86 4737 [11] Gong Y B, Xie Y H and Hao Y H 2009 J. Chem. Phys. 130 165106 [12] Werner J P, Benner H, Florio B J and Stemler T 2011 Physica D 240 1863 [13] Ma J, Xiao T J, Hou Z H and Xin H W 2008 Chaos 18 043116 [14] Shi J C 2010 Phys. Scr. 81 045003 [15] Zhou T S and Zhang S C 2002 Chaos Solitons Fractals 13 621 [16] Li Q S and Shi J C 2007 Phys. Lett. A 360 593 [17] Tyson J J 1973 J. Chem. Phys. 58 3919 [18] Yu P and Gumel A B 2001 J. Sound Vib. 244 795 [19] Xu Y, Li J J, Feng J, Zhang H Q, Xu W and Duan J Q 2013 Eur. Phys. J. B 86 5 [20] Wang Z Q, Xu Y and Yang H 2016 Sci. Chin.: Technol. Sci. 59 3 [21] Jin Y F and Li B 2014 Acta Phys. Sin. 63 21 (in Chinese) [22] Jin Y F 2012 Physica A 391 1928 [23] Xu Y, Li Y G, Zhang H, Li X F and Kurths J 2016 Sci. Rep. 6 31505 [24] Li Y G, Xu Y, Kurths J and Yue X L 2016 Phys. Rev. E 94 042222 [25] Hao M L, Xu W, Gu X D and Qi L Y 2014 Chin. Phys. B 23 090501
[1]
. [J]. 中国物理快报, 2022, 39(7): 70501-.
[2]
. [J]. 中国物理快报, 2019, 36(7): 70201-.
[3]
. [J]. 中国物理快报, 2015, 32(11): 110501-110501.
[4]
. [J]. 中国物理快报, 2014, 31(09): 90501-090501.
[5]
. [J]. 中国物理快报, 2013, 30(7): 70504-070504.
[6]
. [J]. 中国物理快报, 2013, 30(5): 58901-058901.
[7]
SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise [J]. 中国物理快报, 2012, 29(5): 50506-050506.
[8]
REN Xue-Zao1 , YANG Zi-Mo2 , WANG Bing-Hong1,3 , ZHOU Tao2,3** . Mandelbrot Law of Evolving Networks [J]. 中国物理快报, 2012, 29(3): 38904-038904.
[9]
HE Zheng-You;ZHOU Yu-Rong**
. Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise [J]. 中国物理快报, 2011, 28(11): 110505-110505.
[10]
LI Chun;MEI Dong-Cheng;**
. Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises [J]. 中国物理快报, 2011, 28(4): 40501-040501.
[11]
LI Jian-Long;ZENG Ling-Zao;ZHANG Hui-Quan. A Demonstration of Equivalence between Parameter-Induced and Noise-Induced Stochastic Resonances with Multiplicative and Additive Noises [J]. 中国物理快报, 2010, 27(10): 100502-100502.
[12]
ZHOU Yu-Rong. Effect of Time-Delay in the Logistic Growth Model Driven by Weak Signal and White Noise [J]. 中国物理快报, 2010, 27(8): 80502-080502.
[13]
XU Yan;GUO Liang-Peng;DING Ning;WANG You-Gui. Evidence of Scaling in Chinese Income Distribution [J]. 中国物理快报, 2010, 27(7): 78901-078901.
[14]
TIAN Jing;CHEN Yong. Effect of Time Delay on Stochastic Tumor Growth [J]. 中国物理快报, 2010, 27(3): 30502-030502.
[15]
GUO Feng;HUANG Zhi-Qi;FAN Yong;LI Shao-Fu;ZHANG Yu. Stochastic Resonance in a Time-Delayed Mono-Stable System with Multiplicative and Additive Noise [J]. 中国物理快报, 2009, 26(10): 100504-100504.