Abstract:Metamorphic In$_{0.55}$Ga$_{0.45}$P/In$_{0.06}$Ga$_{0.94}$As/Ge triple-junction (3J-MM) solar cells are grown on Ge (100) substrates via metal organic chemical vapor deposition. Epi-structural analyses such as high resolution x-ray diffraction, photoluminence, cathodoluminescence and HRTEM are employed and the results show that the high crystal quality of 3J-MM solar cells is obtained with low threading dislocation density of graded buffer (an average value of 6.8$\times$10$^{4}$/cm$^{2})$. Benefitting from the optimized bandgap combination, under one sun, AM0 spectrum, 25$^{\circ}\!$C conditions, the conversion efficiency is achieved about 32%, 5% higher compared with the lattice-matched In$_{0.49}$Ga$_{0.51}$P/In$_{0.01}$Ga$_{0.99}$As/Ge triple junction (3J-LM) solar cell. Under 1-MeV electron irradiation test, the degradation of the EQE and $I$–$V$ characteristics of 3J-MM solar cells is at the same level as the 3J-LM solar cell. The end-of-life efficiency is $\sim$27.1%. Therefore, the metamorphic triple-junction solar cell may be a promising candidate for next-generation space multi-junction solar cells.
Fuhrmann D, Meusel M, Ebel L, Guter W, Kubera T, Köstler W and Strobl G 2013 Proc. 9th International Conference on Concentrator Photovoltaic Systems p 1
[8]
King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Krut D D, Ermer J H, Sherif R A and Karam N H 2007 Adv. OptoElectron.2007 29523
[9]
Fetzer C M, King R R, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Ermer J H, Romero M J and Karam N H 2004 J. Cryst. Growth261 341