Measurement of the Elasticity of Biological Soft Tissue of Finite Thickness
Hong-Sheng Zhou1,2 , Tong-Yu Wang1 , Zheng Xu3** , Qian Cheng3 , Meng-Lu Qian3 , Xiao-Yi Liu2
1 College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Jilin 1300222 Shanghai Acoustics Laboratory, Chinese Academy of Sciences, Shanghai 2000323 Institute of Acoustics, Tongji University, Shanghai 200092
Abstract :Elasticity is of profound significance to evaluating the function of a biological soft tissue. When the elasticity of a tissue is macroscopically changed, it means that the biological function of the tissue is abnormal and some disease or injury may occur. In the present work, an elastometer is developed to measure the elasticity of biological soft tissues. The measurement is based on the indentation method and the force is measured by the bending of the cantilever. The force-indentation data of the soft tissue is experimentally measured by this elastometer and Young's modulus of the tissue is calculated using the Hertz–Sneddon model. For comparison, a numerical model for the indentation method is established using the finite element method. The difference between the actual modulus and the measured modulus is discussed. The effect of the thickness of the specimen on the measurement is investigated. Young's moduli of beef, porcine liver and porcine kidney are experimentally measured. The results indicate that our elastometer is effective in measuring Young's modulus of a soft tissue quantitatively.
收稿日期: 2016-09-08
出版日期: 2016-12-29
:
46.35.+z
(Viscoelasticity, plasticity, viscoplasticity)
07.10.Pz
(Instruments for strain, force, and torque)
43.35.+d
(Ultrasonics, quantum acoustics, and physical effects of sound)
87.19.R-
(Mechanical and electrical properties of tissues and organs)
[1] Kawano S, Kojima M, Higuchi Y, Sugimoto M, Ikeda K, Sakuyama M, Takahashi S, Hayashi R and Ochiai A 2015 Cancer Sci. 106 1232 [2] Miyanaga N, Akaza H, Yamakawa M, Oikawa T, Sekido N, Hinotsu S, Kawai K, Shimazui T and Shiina T 2006 Int. J. Urol. 13 1514 [3] Aboumarzouk O, Ogston S, Huang Z, Evans A, Melzer A, Stolzenberg J and Nabi G 2012 BJU Int. 110 1414 [4] Samani A, Zubovits J and Plewes D 2007 Phys. Med. Biol. 52 1565 [5] Yin H, Sun L, Wang G and Vannier M 2004 IEEE Trans. Biomed. Eng. 51 1854 [6] Wuyts F, Vanhuyse V, Langewouters G, Decraemer W, Raman E and Buyle S 1995 Phys. Med. Biol. 40 1577 [7] Yeh W, Li P, Jeng Y, Hsu H, Kuo P, Li M, Yang P and Lee P 2002 Ultrasound Med. Biol. 28 467 [8] Last J, Pan T, Ding Y, Reilly C, Keller K, Acott T, Fautsch M, Murphy C and Russell P 2011 Invest. Ophth. Vis. Sci. 52 2147 [9] Gao L, Parker K, Lerner R and Levinson S 1996 Ultrasound Med. Biol. 22 959 [10] Chen E, Novakofski J, Jenkins W and O'Brien W 1996 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 191 [11] Vappou J 2012 Crit. Rev. Biomed. Eng. 40 121 [12] Garteiser P, Doblas S, Daire J, Wagner M, Leitao H, Vilgrain V, Sinkus R and Beers B 2012 Eur. Radiol. 22 2169 [13] McGee K, Mariappan Y, Hubmayr R, Carter R, Bao Z, Levin D, Manduca A and Ehman R 2012 J. Appl. Physiol. 113 666 [14] Nightingale K 2011 Curr. Med. Imaging Rev. 7 328 [15] Palmeri M, Wang M, Dahl J, Frinkley K and Nightingale K 2008 Ultrasound Med. Biol. 34 546 [16] Barnes S, Lyshchik A, Washington M, Gore J and Miga M 2007 Med. Phys. 34 4439 [17] Harrison S, Bush M and Petros P 2008 Int. J. Mech. Sci. 50 626 [18] Vappou J, Hou G, Marquet F, Shahmirzadi D, Grondin J and Konofagou E 2015 Phys. Med. Biol. 60 2853 [19] McKee C, Last J, Russell P and Murphy C 2011 Tissue Eng.: Part. B 17 155 [20] Egorov V, Tsyuryupa S, Kanilo S, Kogit M and Sarvazyan A 2008 Med. Eng. Phys. 30 206 [21] Yao W, Yoshida K, Fernandez M, Vink J, Wapner R, Ananth C, Oyen M and Myers K 2014 J. Mech. Behav. Biomed. 34 18 [22] Jiang Y, Li G, Qian L, Liang S, Destrade M and Cao Y 2015 Biomech. Model Mechanobiol. 14 1119 [23] Han L, Noble J and Burcher M 2003 Ultrasound Med. Biol. 29 813 [24] Lucasa M and Riedo E 2012 Rev. Sci. Instrum. 83 061101 [25] Ebenstein D and Pruitt L 2006 Nanotoday 1 26 [26] Lulevich V, Zink T, Chen H, Liu F and Liu G 2006 Langmuir 22 8151 [27] Samur E, Sedef M, Basdogan C, Avtan L and Duzgun O 2007 Med. Image Anal. 11 361 [28] Roduit C, Goot F, Rios P, Yersin A, Steiner P, Dietler G, Catsicas S and Lafont F 2008 Biophys. J. 94 1521 [29] Selby A, Maldonado-Codina C and Derby B 2014 J. Mech. Behav. Biomed. 35 144 [30] Lu M and Zheng Y 2004 Med. Biol. Eng. Comput. 42 535 [31] Yang F 2006 Thin Solid Films 515 2274 [32] Clancy N, Nilsson G, Anderson C and Leahy M 2010 Skin Res. Technol. 16 210 [33] Peng X, Huang J, Deng H, Xiong C and Fang J 2011 Meas. Sci. Technol. 22 027003 [34] Soons J, de Baere I and Dirckx J 2011 Exp. Mech. 51 85 [35] Mattice J, Lau A, Oyen M and Kent R 2006 J. Mater. Res. 21 2003 [36] Cox M, Gawlitta D, Driessen N, Oomens C and Baaijens F 2008 Comput. Method. Biomec. 11 585 [37] Codan B, Del Favero G, Martinelli V, Long C, Mestroni L and Sbaizero O 2014 Mater. Sci. Eng. C 40 427 [38] Fung Y 1981 Biomechanics: Mechanical Properties of Living Tissues (New York: Springer-Verlag) [39] Liu Y, Kerdok A and Howe R 2004 A Nonlinear Finite Element Model of Soft Tissue Indentation (Berlin: Springer)
[1]
YANG Fan;ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem? [J]. 中国物理快报, 2010, 27(12): 124701-124701.
[2]
YANG Fan;ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop [J]. 中国物理快报, 2010, 27(3): 34601-034601.
[3]
HU Kai-Xin;ZHU Ke-Qin. Mechanical Analogies of Fractional Elements [J]. 中国物理快报, 2009, 26(10): 108301-108301.
[4]
HOU Ri-Li;;PENG Jian-Xiang;JING Fu-Qian;ZHANG Jian-Hua;ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures [J]. 中国物理快报, 2009, 26(9): 96201-096201.
[5]
CHEN Da-Nian;FAN Chun-Lei;HU Jin-Wei;WU Shan-Xing;WANG Huan-Ran;TAN Hua;YU Yu-Ying. Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves [J]. 中国物理快报, 2007, 24(3): 786-789.
[6]
YU Yu-Ying;TAN Hua;DAI Cheng-Da;HU Jian-Bo;CHEN Da-Nian. Sound Velocity and Release Behaviour of Shock-Compressed LY12 Al [J]. 中国物理快报, 2005, 22(7): 1742-1745.