Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple Quantum Wells Used for Solar Cells and Photodetectors
Qing-Ling Sun, Lu Wang, Yang Jiang, Zi-Guang Ma, Wen-Qi Wang, Ling Sun, Wen-Xin Wang, Hai-Qiang Jia, Jun-Ming Zhou, Hong Chen**
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photocurrent rather than relax to the ground state of the quantum wells. The photo absorption coefficient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
收稿日期: 2016-08-18
出版日期: 2016-10-27
:
68.65.Fg
(Quantum wells)
73.63.-b
(Electronic transport in nanoscale materials and structures)
81.07.St
(Quantum wells)
引用本文:
. [J]. 中国物理快报, 2016, 33(10): 106801-106801.
Qing-Ling Sun, Lu Wang, Yang Jiang, Zi-Guang Ma, Wen-Qi Wang, Ling Sun, Wen-Xin Wang, Hai-Qiang Jia, Jun-Ming Zhou, Hong Chen. Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple Quantum Wells Used for Solar Cells and Photodetectors. Chin. Phys. Lett., 2016, 33(10): 106801-106801.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/33/10/106801
或
https://cpl.iphy.ac.cn/CN/Y2016/V33/I10/106801
[1] Garnett E C and Yang P 2008 J. Am. Chem. Soc. 130 9224 [2] Jampana B R, Melton A G, Jamil M, Faleev N N, Opila R L, Ferguson I T and Honsberg C B 2010 IEEE Electron Device Lett. 31 32 [3] Feng S W, Lai C M, Tsai C Y, Su Y R and Tu L W 2013 Opt. Mater. Express 3 1777 [4] Olson J M, Kurtz S R, Kibbler A E and Faine P 1990 Appl. Phys. Lett. 56 623 [5] Bertness K A, Kurtz S R, Friedman D J, Kibbler A E, Kramer C and Olson J M 1994 Appl. Phys. Lett. 65 989 [6] Barros A S, Abramof E and Rappl P H O 2006 J. Appl. Phys. 99 024904 [7] Monroy E, Munoz E, Sanchez F J, Calle F, Calleja E, Beaumont B, Gibart P, Munoz J A and Cusso F 1998 Semicond. Sci. Technol. 13 1042 [8] Wagner S, Shay J L, Migliorato P and Kasper H M 1974 Appl. Phys. Lett. 25 434 [9] Werthen J G, Hamaker H C, Virshup G F and Ford C W 1985 Appl. Phys. Lett. 46 776 [10] Dupuis R D, Dapkus P D, Yingling R D and Moudy L A 1977 Appl. Phys. Lett. 31 201 [11] Sugaya T, Mochizuki T, Makita K, Oshima R, Matsubara K, Okano Y and Niki S 2015 Jpn. J. Appl. Phys. 54 08KE02 [12] Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E and Kiehl J T 2007 Appl. Phys. Lett. 91 023502 [13] Popescu V, Bester G, Hanna M C, Norman A G and Zunger A 2008 Phys. Rev. B 78 205321 [14] Tomic S 2010 Phys. Rev. B 82 195321 [15] Janousek B K, Daugherty M J, Bloss W L, Rosenbluth M L, O'Loughlin M J, Kanter H, De F J and Perry L E 1990 J. Appl. Phys. 67 7608 [16] Karunasiri G, Park J S, Chen J, Shih R, Scheihing J F and Dodd M A 1995 Appl. Phys. Lett. 67 2600 [17] Pal D and Towe E 2006 Appl. Phys. Lett. 88 153109 [18] Phillips J, Bhattacharya P, Kennerly S W, Beekman D W and Dutta M 1999 IEEE J. Quantum Electron. 35 936 [19] Grundmann M 2010 The Physics of Semiconductors (Heidelberg: Springer-Verlag) [20] Barnham K W J and Duggan G 1990 J. Appl. Phys. 67 3490 [21] Barnham K W J, Braun B, Nelson J, Paxman M, Button C, Roberts J S and Foxon C T 1991 Appl. Phys. Lett. 59 135 [22] Lang J R, Young N G, Farrell R M, Wu Y R and Speck J S 2012 Appl. Phys. Lett. 101 181105 [23] Horikoshi Y, Fischer A and Ploog K 1985 Phys. Rev. B 31 7859 [24] Fonash S J 2010 Solar Cell Device Physics (Burlington: Academic Press) [25] Shur M 1990 Physics of Semiconductor Devices (New Jersey: Prentice-Hall) [26] Basu P K 1997 Theory of Optical Processes in Semiconductors (New York: Oxford University Press) [27] Zimmermann S, Wixforth A, Kotthaus J P, Wegscheider W and Bichler M 1999 Science 283 1292 [28] Feldmann J, Peter G, Gobel E O, Dawson P, Moore K, Foxon C and Elliott R J 1987 Phys. Rev. Lett. 59 2337 [29] Van Eck T E, Chu P, Chang W S C and Wieder H H 1986 Appl. Phys. Lett. 49 135
[1]
. [J]. 中国物理快报, 2018, 35(5): 57801-.
[2]
WANG Hai-Li;WU Dong-Hai;WU Bing-peng;NI Hqiao-Qiao;HUANG She-Song;XIONG Yong-Hua;WANG Peng-Fei;HAN Qin;NIU Zhi-Chuan;I.Tångring;S. M. Wang. Metamorphic InGaAs Quantum Well Laser Diodes at 1.5μm on GaAs Grown by Molecular Beam Epitaxy [J]. 中国物理快报, 2009, 26(1): 14214-014214.
[3]
WU Bing-Peng;WU Dong-Hai;NI Hai-Qiao;HUANG She-Song;ZHAN Feng;XIONG Yong-Hua;XU Ying-Qiang;NIU Zhi-Chuan. Optimization of Metamorphic InGaAs Quantum Wells on GaAs Grown by Molecular Beam Epitaxy [J]. 中国物理快报, 2007, 24(12): 3543-3546.
[4]
XIONG Da-Yuan;LI Ning;XU Wen-Lan;YIN Fei;LU Wei. A New Resonant Tunnelling Structure of Integrated InGaAs/GaAs Very-Long-Wavelength Quantum-Well Infrared Photodetector [J]. 中国物理快报, 2007, 24(11): 3283-3285.
[5]
XIONG Da-Yuan;LI Ning;LI Zhi-Feng;ZHEN Hong-Lou;LU Wei. Detection Wavelength of Strained Inx Ga1-x As/GaAs Very-Long-Wavelength Quantum Well Infrared Photodetectors [J]. 中国物理快报, 2007, 24(5): 1403-1406.
[6]
ZHAO Qian;PAN Jiao-Qing;ZHOU Fan;WANG Bao-Jun;WANG Lu-Feng;WANG Wei. A 10-GHz Bandwidth Electroabsorption Modulated Laser by Ultra-Low-Pressure Selective Area Growth [J]. 中国物理快报, 2005, 22(8): 2016-2019.
[7]
ZHEN Hong-Lou;LI Ning;XIONG Da-Yuan;ZHOU Xu-Chang;LU Wei;LIU Hui-Chun. Fabrication and Investigation of an Upconversion Quantum-Well Infrared Photodetector Integrated with a Light-Emitting Diode [J]. 中国物理快报, 2005, 22(7): 1806-1808.
[8]
YU Hong-Bo;CHEN Hong;LI Dong-Sheng;ZHOU Jun-Ming. Structural and Optical Characteristics of InGaN/GaN Multi-Quantum Wells Grown on a- and c-Plane Sapphire Substrates [J]. 中国物理快报, 2004, 21(7): 1323-1326.