Relativistic Brueckner–Hartree–Fock Theory for Finite Nuclei
Shi-Hang Shen1,2 , Jin-Niu Hu3 , Hao-Zhao Liang2,4 , Jie Meng1,5,6** , Peter Ring1,7 , Shuang-Quan Zhang1
1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871
2 RIKEN Nishina Center, Wako 351-0198, Japan
3 Department of Physics, Nankai University, Tianjin 300071
4 Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
5 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
6 Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
7 Physik-Department der Technischen Universit?t München, D-85748 Garching, Germany
Abstract :Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner–Hartree–Fock equations are solved for finite nuclei in a Dirac–Woods–Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner–Hartree–Fock results and much closer to the experimental data. This opens the door for ab initio covariant investigations of heavy nuclei.
收稿日期: 2016-09-17
出版日期: 2016-10-27
[1]
Jastrow R 1951 Phys. Rev. 81 165
[2]
Machleidt R 1989 Adv. Nucl. Phys. 19 189
[3]
Brueckner K A, Levinson C A and Mahmoud H M 1954 Phys. Rev. 95 217
[4]
Day B D 1967 Rev. Mod. Phys. 39 719
[5]
Jastrow 1955 Phys. Rev. 98 1479
[6]
Day B D 1978 Rev. Mod. Phys. 50 495
[7]
Stoks V G J, Klomp R A M, Terheggen C P F and de Swart J J 1994 Phys. Rev. C 49 2950
[8]
Wiringa R B, Stoks V G and Schiavilla R 1995 Phys. Rev. C 51 38
[9]
Machleidt R 2001 Phys. Rev. C 63 024001
[10]
Epelbaum E, Hammer H W and Meissner U G 2009 Rev. Mod. Phys. 81 1773
[11]
Machleidt R and Entem D R 2011 Phys. Rep. 503 1
[12]
Carlson J, Gandolfi S, Pederiva F, Pieper S c, Schiavilla R, Schmidt K E and Wiringa R B 2015 Rev. Mod. Phys. 87 1067
[13]
Dickhoff W H and Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377
[14]
Hagen G, Papenbrock T, Hjorth-Jensen M and Dean D J 2014 Rep. Prog. Phys. 77 096302
[15]
Lee D 2009 Prog. Part. Nucl. Phys. 63 117
[16]
Barrett B R, Navratil P and Vary J P 2013 Prog. Part. Nucl. Phys. 69 131
[17]
Coester F, Cohen S, Day B and Vincent C M 1970 Phys. Rev. C 1 769
[18]
Fujita J and Miyazawa H 1957 Prog. Theor. Phys. 17 360
[19]
Brown G and Green A 1969 Nucl. Phys. A 137 1
[20]
Song H Q, Baldo M, Giansiracusa G and Lombardo U 1998 Phys. Rev. Lett. 81 1584
[21]
Pieper S C and Wiringa R B 2001 Annu. Rev. Nucl. Part. Sci. 51 53
[22]
Anastasio M R, Celenza L S, Pong W S and Shakin C M 1983 Phys. Rep. 100 327
[23]
Brockmann R and Machleidt R 1984 Phys. Lett. B 149 283
[24]
ter Haar B and Malfliet R 1987 Phys. Rep. 149 207
[25]
Bethe H A and Goldstone J 1957 Proc. R. Soc. A 238 551
[26]
Becker R L, Davies K T R and Patterson M R 1974 Phys. Rev. C 9 1221
[27]
Müther H, Machleidt R and Brockmann R 1988 Phys. Lett. B 202 483
[28]
Müther H, Machleidt R and Brockmann R 1990 Phys. Rev. C 42 1981
[29]
Brockmann R and Toki H 1992 Phys. Rev. Lett. 68 3408
[30]
Fritz R, Müther H and Machleidt R 1993 Phys. Rev. Lett. 71 46
[31]
van Dalen E N E and Müther H 2010 Int. J. Mod. Phys. E 19 2077
[32]
Van Giai N, Carlson B V, Ma Z and Wolter H 2010 J. Phys. G 37 064043
[33]
Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323
[34]
Ring P and Schuck P 1980 The Nuclear Many-Body Problem (Berlin: Springer-Verlag)
[35]
Bethe H A 1971 Annu. Rev. Nucl. Sci. 21 93
[36]
Krenciglowa E M, Kund C L, Kuo T T S and Osnes E 1976 Ann. Phys. (N. Y.) 101 154
[37]
Lalazissis G A, Karatzikos S, Serra M, Otsuka T and Ring P 2009 Phys. Rev. C 80 041301
[38]
Long W H, Van Giai N and Meng J 2006 Phys. Lett. B 640 150
[39]
Haftel M I and Tabakin F 1970 Nucl. Phys. A 158 1
[40]
Schiller E, Müther H and Czerski P 1999 Phys. Rev. C 59 2934
[41]
Suzuki K, Okamoto R, Kohno M and Nagata S 2000 Nucl. Phys. A 665 92
[42]
Rajaraman R and Bethe H A 1967 Rev. Mod. Phys. 39 745
[43]
Davies K T R, Baranger M, Tarbutton R M and Kuo T T S 1969 Phys. Rev. 177 1519
[44]
Koepf W, Sharma M and Ring P 1991 Nucl. Phys. A 533 95
[45]
Gu H Q, Liang H, Long W H, Giai N V and Meng J 2013 Phys. Rev. C 87 041301
[46]
Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1998 Nucl. Phys. A 635 231
[47]
Wang M, Audi G, Wapstra A, Kondev F, MacCormick M, Xu X and Pfeiffer B 2012 Chin. Phys. C 36 1603
[48]
Angeli I and Marinova K 2013 At. Data Nucl. Data Tables 99 69
[49]
Coraggio L, Itaco N, Covello A, Gargano A and Kuo T T S 2003 Phys. Rev. C 68 034320
[50]
Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965
[51]
Roth R, Langhammer J, Calci A, Binder S and Navrátil P 2011 Phys. Rev. Lett. 107 072501
[52]
Hagen G, Papenbrock T, Dean D J, Hjorth-Jensen M and Asokan B V 2009 Phys. Rev. C 80 021306
[53]
Ozawa A et al 2001 Nucl. Phys. A 691 599
[54]
van Dalen E N E and Müther H 2011 Phys. Rev. C 84 024320
[55]
Litvinova E and Ring P 2006 Phys. Rev. C 73 044328
[56]
Baldo M, Bombaci I and Burgio G F 1997 Astron. Astrophys. 328 274
[57]
Zuo W, Lejeune A, Lombardo U and Mathiot J 2002 Nucl. Phys. A 706 418
[58]
Brown G E, Weise W, Baym G and Speth J 1987 Commun. Nucl. Part. Phys. 17 39
[59]
Negele J 1982 Rev. Mod. Phys. 54 913
[1]
. [J]. 中国物理快报, 2014, 31(08): 82102-082102.
[2]
. [J]. 中国物理快报, 2014, 31(06): 62502-062502.
[3]
. [J]. 中国物理快报, 2013, 30(10): 102501-102501.
[4]
. [J]. 中国物理快报, 2012, 29(9): 92102-092102.
[5]
GAN Sheng-Xin,ZUO Wei**,U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach [J]. 中国物理快报, 2012, 29(4): 42102-042102.