Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses
Guo-Bo Zhang1,2, N. A. M. Hafz2,3**, Yan-Yun Ma1,3**, Lie-Jia Qian2,3, Fu-Qiu Shao1, Zheng-Ming Sheng2,3,4
1College of Science, National University of Defense Technology, Changsha 410073 2Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 4SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
Abstract:We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
Ge Z Y, Yin Y, Li S X, Yu M Y, Yu T P, Xu H, Zhuo H B, Ma Y Y, Shao F Q and Tian C L 2012 New J. Phys.14 103015
[8]
Burza M, Gonoskov A, Svensson K, Gonoskov A, Svensson K, Wojda F, Persson A, Hansson M, Genoud G, Marklund M, Wahlstr? m C G and Lundh O 2013 Phys. Rev. ST Accel. Beams16 011301
[9]
Eremin V, Malkov Y, Korolikhin V, Kiselev A, Skobelev S, Stepanov A and Andreev N 2012 Phys. Plasmas19 093121
Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep.5 14659
[14]
Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403
Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M and Zhao N 2013 Acta Phys. Sin.62 205203 (in Chinese)
Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M and Zhao N 2013 Acta Phys. Sin.62 125205 (in Chinese)
Zhang G B, Ma Y Y, Xu H, Hafz N A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y and Kawata S 2015 Phys. Plasmas22 083110
[19]
Cole J M, Wood J C, Lopes N C, Poder K, Abel R L, Alatabi S, Bryant J S J, Jin A, Kneip S, Mecseki K, Symes D R, Mangles S P D and Najmudin Z 2015 Sci. Rep.5 13244
[20]
Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J and Zhang J 2006 Phys. Plasmas13 110702
[21]
Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas22 103102
[22]
Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth Cs, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett.113 245002
Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K and Lee J 2008 Nat. Photon.2 571
Li S, Hafz N A M, Mirzaie M, Sokollik T, Zeng M, Chen M, Sheng Z M and Zhang J 2014 Opt. Express22 29578
Deng Y P, Schwarz A, Fattahi H, Ueffing M, Gu X, Ossiander M, Metzger T, Pervak V, Ishizuki H, Taira T, Kobayashi T, Marcus G, Krausz F, Kienberger R and Karpowicz N 2012 Opt. Lett.37 4973
Pollock B B, Tsung F S, Albert F, Shaw J L, Clayton C E, Davidson A, Lemos N, Marsh K A, Pak A, Ralph J E, Mori W B and Joshi C 2015 Phys. Rev. Lett.115 055004