Magnetosonic Shocks in Ultra-Relativistic Dissipative Degenerate Plasmas
S. Hussain** , N. Akhtar, N. Mustafa
Theoretical Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000, Pakistan
Abstract :Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied. The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electron fluids with the Maxwell equations are presented. Using the reductive perturbation technique the Korteweg de Vries Burgers (KdVB) equation is derived and its solution is presented with the $\tanh$ method. Astrophysical plasma parameters are used to study the effects of variation of plasma density, magnetic field intensity and kinematic viscosity on the propagation characteristics of nonlinear shock structures in such plasma systems.
收稿日期: 2016-03-24
出版日期: 2016-08-31
:
52.35.Bj
(Magnetohydrodynamic waves (e.g., Alfven waves))
52.35.Tc
(Shock waves and discontinuities)
52.65.Vv
(Perturbative methods)
[1] Chandrasekhar S 1935 Mon. Not. R. Astron. Soc. 95 207 [2] Misra A P and Shukla P K 2012 Phys. Rev. E 85 026409 [3] Zeba I, Moslem W M and Shukla P K 2012 Astrophys. J. 750 72 [4] Mahmood S, Sadiq S and Haque Q 2013 Phys. Plasmas 20 122305 [5] Roy N, Tasnim S and Mamun A A 2012 Phys. Plasmas 19 033705 [6] Hussain S, Mahmood S and Rehman A 2014 Phys. Plasmas 21 112901 [7] Kulsrud R M, Ostriker J P and Gunn J E 1972 Phys. Rev. Lett. 28 636 [8] Lee E, Parks G K, Wilbr M and Lin N 2009 Phys. Rev. Lett. 103 031101 [9] Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243 [10] Sultana S, Sarri G and Kourakis I 2012 Phys. Plasmas 19 012310 [11] Sahu B, Sinha A, Roychoudhury R and Khan M 2013 Phys. Plasmas 20 112303 [12] Meyer-Vernet N 2007 Basics of Solar Wind (Cambridge: Cambridge Press) p 56 [13] Sabry R, Moslem W M and Shukla P K 2012 Phys. Plasmas 19 122903 [14] Rasheed A, Tsintsadze N L and Murtaza G 2011 Phys. Plasmas 18 112701 [15] Washimi H and Tanuiti T 1966 Phys. Rev. Lett. 17 996 [16] Malfliet W 1992 Am. J. Phys. 60 650 [17] Hussain S, Rehman A, Hasnain H and Mustafa N 2015 Astrophys. Space Sci. 359 29 [18] Hussain S, Akhtar N and Hasnain H 2015 Astrophys. Space Sci. 360 25
[1]
. [J]. 中国物理快报, 2022, 39(10): 105201-.
[2]
. [J]. 中国物理快报, 2021, 38(8): 85201-.
[3]
. [J]. 中国物理快报, 2021, 38(5): 55202-.
[4]
. [J]. 中国物理快报, 2021, 38(4): 45203-.
[5]
. [J]. 中国物理快报, 2021, 38(3): 35201-.
[6]
. [J]. 中国物理快报, 2020, 37(9): 95201-.
[7]
. [J]. 中国物理快报, 2016, 33(10): 105201-105201.
[8]
. [J]. 中国物理快报, 2016, 33(06): 65204-065204.
[9]
. [J]. Chin. Phys. Lett., 2012, 29(11): 115201-115201.
[10]
. [J]. 中国物理快报, 2012, 29(8): 85201-085201.
[11]
GUO Wen-Feng;WANG Shao-Jie;LI Jian-Gang. Numerical Investigation of Finite k Effect on Damping Rate of Geodesic Acoustic Mode in Collisionless Plasmas [J]. 中国物理快报, 2009, 26(4): 45202-045202.
[12]
WANG De-Yu. Electron Acceleration by a Finite-Amplitude Solitary Kinetic Alfvén Wave [J]. 中国物理快报, 2009, 26(1): 19601-019601.
[13]
DING Jian;LI Yi;WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves [J]. 中国物理快报, 2008, 25(7): 2554-2557.
[14]
HE Jin-Chun;CHEN Zong-Yun;YAN Tian;HUANG Nian-Ning. Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions [J]. 中国物理快报, 2008, 25(7): 2403-2406.
[15]
WANG De-Yu;SONG Qi-Wu;YANG Lei. Electron Acceleration by Small-Amplitude Solitary Kinetic Alfven Wave in a Low-Beta Plasma [J]. 中国物理快报, 2008, 25(2): 794-797.