Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities
Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li**
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :We discuss the evolution dynamics of a quantum system consisting of two two-level atoms separately embedded within two strongly coupled photonic crystal cavities. Although the quantum system is subjected to dissipation and decoherence from the cavity leakage and the atomic decay, it does allow for eigenstates that are not influenced by one of the two dissipation channels and results in dissipation-inhibition quantum states. These dissipation-free quantum states can help to achieve an extremely long photon and atom storage lifetime and provide a new perspective to realize efficient quantum information storage via reducing the negative influence of the dissipation from the environment.
收稿日期: 2016-03-25
出版日期: 2016-08-01
:
42.50.Pq
(Cavity quantum electrodynamics; micromasers)
32.80.Qk
(Coherent control of atomic interactions with photons)
42.50.Gy
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
[1] Carmichael H J 1999 Statistical Methods in Quantum Optics (New York: Springer) [2] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601 [3] Chen M F and Zhang C L 2015 Chin. Phys. B 24 070310 [4] Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303 [5] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837 [6] Ma?tre X, Hagley E, Nogues G, Wunderlich C, Goy P, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 769 [7] Fidio C D and Vogel W 2009 Phys. Rev. A 79 050303(R) [8] Xiang S H, Deng X P and Song K H 2012 Chin. Phys. Lett. 29 050304 [9] Zhong Z R 2013 Chin. Phys. Lett. 30 080303 [10] Wang S S, Hu Z F, Li Y H and Tong L M 2009 Opt. Lett. 34 253 [11] Ochiai T, Inoue J and Sakoda K 2006 Phys. Rev. A 74 063818 [12] Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S and Kimble H J 1998 Phys. Rev. A 57 R2293 [13] Song B S, Noda S, Asano T and Akahane Y 2005 Nat. Mater. 4 207 [14] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857 [15] Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896 [16] Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341 [17] Li Z Y and Xia Y N 2001 Phys. Rev. A 63 043817 [18] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 [19] Shi T, Fan S H and Sun C P 2011 Phys. Rev. A 84 063803 [20] Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202 [21] Linington I E and Garraway B M 2008 Phys. Rev. A 77 033831 [22] Tawara T, Kamada H, Tanabe T, Sogawa T, Okamoto H, Yao P, Pathak P K and Hughes S 2010 Opt. Express 18 2719 [23] Lukyanets S P and Bevzenko D A 2006 Phys. Rev. A 74 053803 [24] Zhang K and Li Z Y 2010 Phys. Rev. A 81 033843
[1]
. [J]. 中国物理快报, 2023, 40(2): 20502-.
[2]
. [J]. 中国物理快报, 2022, 39(12): 124202-.
[3]
. [J]. 中国物理快报, 2021, 38(9): 94203-.
[4]
. [J]. 中国物理快报, 2021, 38(4): 44201-.
[5]
. [J]. 中国物理快报, 2020, 37(2): 20302-.
[6]
. [J]. 中国物理快报, 2019, 36(7): 70302-.
[7]
. [J]. 中国物理快报, 2019, 36(3): 34204-.
[8]
. [J]. 中国物理快报, 2018, 35(11): 116401-.
[9]
. [J]. 中国物理快报, 2017, 34(1): 13701-013701.
[10]
. [J]. 中国物理快报, 2016, 33(01): 14202-014202.
[11]
. [J]. 中国物理快报, 2015, 32(10): 104210-104210.
[12]
. [J]. 中国物理快报, 2015, 32(10): 107804-107804.
[13]
. [J]. 中国物理快报, 2015, 32(06): 60303-060303.
[14]
. [J]. 中国物理快报, 2015, 32(4): 40303-040303.
[15]
. [J]. 中国物理快报, 2014, 31(2): 24206-024206.