Traveling Wave Solutions of the Incompressible Ideal Hall Magnetohydrodynamics
Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang**
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Abstract :The solutions of incompressible ideal Hall magnetohydrodynamics are obtained by using the traveling wave method. It is shown that the velocity and magnetic field parallel to the wave vector can be arbitrary constants. The velocity and magnetic field perpendicular to the wave vector are both helical waves. Moreover, the amplitude of the velocity perpendicular to the wave vector is related to the wave number and the circular frequency. In addition, further studies indicate that, no matter whether the uniform ambient magnetic field exists or not, the forms of the travelling wave solutions do not change.
收稿日期: 2016-03-04
出版日期: 2016-06-30
:
52.30.Ex
(Two-fluid and multi-fluid plasmas)
52.35.Bj
(Magnetohydrodynamic waves (e.g., Alfven waves))
[1] Alfvén H and F?lthammer C 1963 Cosmical Electrodynamics (Oxford: Clarendon Press) [2] Parker E N 1979 Cosmic Magnetic Fields (Oxford: Clarendon Press) [3] Frisch U, Pouquet A, Leorat J et al 1975 J. Fluid Mech. 68 769 [4] Pouquet A, Frisch U and Leorat J 1976 J. Fluid Mech. 77 321 [5] Malekynia B and Razavipour S S 2013 Chin. Phys. B 22 055202 [6] WU D J and Yang L 2006 Chin. Phys. Lett. 23 2155 [7] Iroshnikov P S 1964 Soviet Astron. 7 566 [8] Kraichnan R H 1965 Phys. Fluids 8 1385 [9] Stribling T and Matthaeus W H 1990 Phys. Fluids B 2 1979 [10] Shebalin J V, Matthaeus W H and Montgomery D 1983 J. Plasma Phys. 29 525 [11] Goldstein M L, Roberts D A and Matthaeus W H 1995 Annu. Rev. Astron. AstroPhys. 33 283 [12] Mininni P D, Gómez D O and Mahajan S M 2002 Astrophys. J. 567 L81 [13] Mininni P D, Gómez D O and Mahajan S M 2003 Astrophys. J. 587 472 [14] Matthaeus W H, Dmitruk P, Smith D et al 2003 Geophys. Res. Lett. 30 2104 [15] Sahraoui F, Galtier S and Belmont G P 2007 J. Plasma Phys. 73 723 [16] Xia Z W and Yang W H 2015 Phys. Plasmas 22 032306 [17] Mahajan S M and Krishan V 2005 Mon. Not. R. Astron. Soc. 359 L27 [18] Krishan V and Mahajan S M 2004 Sol. Phys. 220 29 [19] Krishan V and Mahajan S M 2004 J. Geophys. Res. 109 A11105 [20] Servidio S, Matthaeus W H and Carbone V 2008 Phys. Plasmas 15 042314 [21] Meyrand R and Galtier S 2012 Phys. Rev. Lett. 109 194501 [22] Li Z B and Wang M L 1993 J. Phys. A 26 6027 [23] Parkes E J and Duffy B R 1997 Phys. Lett. A 229 217
[1]
. [J]. 中国物理快报, 0, (): 62801-.
[2]
. [J]. 中国物理快报, 2020, 37(6): 62801-.
[3]
. [J]. 中国物理快报, 2018, 35(7): 75201-.
[4]
. [J]. 中国物理快报, 2017, 34(1): 15201-015201.
[5]
. [J]. 中国物理快报, 2016, 33(08): 85205-085205.
[6]
. [J]. 中国物理快报, 2015, 32(11): 115201-115201.
[7]
. [J]. 中国物理快报, 2013, 30(8): 85202-085202.
[8]
S. Ali Shan;**;A. Mushtaq
. Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure [J]. 中国物理快报, 2011, 28(7): 75204-075204.
[9]
WANG Yun-Liang;ZHOU Zhong-Xiang;LU Yan-Zhen;NI Xiao-Dong;SHEN Jiang;ZHANG Yu. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma [J]. 中国物理快报, 2008, 25(8): 2930-2933.
[10]
DING Jian;LI Yi;WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves [J]. 中国物理快报, 2008, 25(7): 2554-2557.
[11]
HE Yong;HU Xi-Wei;JIANG Zhong-He. Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates [J]. 中国物理快报, 2008, 25(3): 1015-1018.
[12]
JIANG Zhong-He;HE Yong;HU Xi-Wei;LV Jian-Hong;HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas [J]. 中国物理快报, 2007, 24(8): 2316-2318.
[13]
YANG Lei;WU De-Jin. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas [J]. 中国物理快报, 2006, 23(8): 2155-2157.
[14]
HE Yong;HU Xi-Wei;HU Ye-Min. Jump Conditions of a Shock with Current in Cylindrical Non-Neutral Plasma [J]. 中国物理快报, 2006, 23(1): 165-168.
[15]
WANG Ai-Ke;H. Sanuki;DONG Jia-Qi;F. Zonca;K. Itoh. Magnetic Field Gradient and Curvature-Driven Drift Modes in Toroidal Plasmas [J]. 中国物理快报, 2004, 21(8): 1575-1577.