Effect of Chirality on the Electronic Transport Properties of the Thioxanthene-Based Molecular Switch
Cai-Juan Xia** , Bo-Qun Zhang, Mao Yang, Chun-Lan Wang, Ai-Yun Yang
School of Science, Xi'an Polytechnic University, Xi'an 710048
Abstract :Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. Furthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices.
收稿日期: 2015-11-12
出版日期: 2016-04-29
:
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
73.23.-b
(Electronic transport in mesoscopic systems)
85.65.+h
(Molecular electronic devices)
[1] Heath J R and Ratner M A 2003 Phys. Today 56 43 [2] Halbritter A, Csonka S, Mihaly G, Jurdik E, Kolesnychenko O Y, Shklyarevskii O I, Speller S and Kempen H 2003 Phys. Rev. B 68 035417 [3] Smit R H M, Noat Y, Untiedt C, Lang N D, Hemert M C and Ruitenbeek J M 2002 Nature 419 906 [4] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550 [5] Qiu M, Zhang Z H, Fan Z Q, Deng X Q and Pan J B 2011 J. Phys. Chem. C 115 11734 [6] Lee S U, Belosludov R V, Mizuseki H and Kawazoe Y 2011 Nanoscale 3 1773 [7] Zeng J, Chen K Q, He J, Zhang X J and Hu W P 2011 Org. Electron. 12 1606 [8] An Y P, Yang Z Q and Ratner M A 2011 J. Phys. Chem. 135 044706 [9] Ren Y, Chen K Q, He J, Tang L M, Pan A L, Zou B S and Zhang Y 2010 Appl. Phys. Lett. 97 103506 [10] Katsonic N, Kudernac T, Walko M, Wees B J and Feringa B L 2006 Adv. Mater. 18 1397 [11] Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102 [12] Xia C J, Liu D S and Zhang Y T 2011 Chin. Phys. Lett. 28 093102 [13] Bandarab H M D and Burdette S C 2012 Chem. Soc. Rev. 41 1809 [14] Beharry A A and Woolley G A 2011 Chem. Soc. Rev. 40 4422 [15] Whalley A C, Steigerwald M L, Guo X F and Nuckolls C 2007 J. Am. Chem. Soc. 129 12590 [16] Berkovic G, Krongauz V and Weiss V 2000 Chem. Rev. 100 1741 [17] Tomasulo M, Sortino S, White A J P and Raymo F M 2005 J. Org. Chem. 70 8180 [18] Jockusch S, Turro N J and Blackburn F R 2002 J. Phys. Chem. A 106 9236 [19] Sheepwash M A L, Mitchell R H and Bohne C 2002 J. Am. Chem. Soc. 124 4693 [20] Benesch C, Rode M F, Cizek M, Hartle R, Rubio-Pons O, Thoss M and Sobolewski A L 2009 J. Phys. Chem. C 113 10315 [21] Feringa B L 2001 Acc. Chem. Res. 34 504 [22] Braga S F, Galvao D S, Barone P M and Dantas S O 2001 J. Phys. Chem. B 105 8334 [23] Delden R A, Huck N P, Piet J J, Warman J M, Meskers S C J, Dekkers H P and Feringa B L 2003 J. Am. Chem. Soc. 125 15659 [24] Cao Y, Dong S H, Liu S, Liu Z F and Guo X F 2013 Angew. Chem. Int. Ed. 52 3906 [25] Jia C C, Wang J Y, Yao C J, Cao Y, Zhong Y W, Liu Z R, Liu Z F and Guo X F 2013 Angew. Chem. Int. Ed. 52 8666 [26] Guo X, Small J P, Klare J E, Wang Y, Purewal M S, Tam I W, Hong B H, Caldwell R, Huang L, Breslow R, Wind S J, Hone J, Kim P and Nuckolls C 2006 Science 311 356 [27] Ke S H, Baranger H U and Yang W T 2005 J. Chem. Phys. 122 074704 [28] Yu J X, Hou Z W and Liu X Y 2015 Chin. Phys. B 24 067307 [29] Cheng D, Kim W Y, Min S K, Nautiyal T and Kim K S 2006 Phys. Rev. Lett. 96 096104 [30] Bruque N A, Pandey R R and Lake R K 2007 Phys. Rev. B 76 205322 [31] Chen W C, Lee Y W and Chen C T 2010 Org. Lett. 12 1472 [32] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [33] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [34] Ceperley D M and Aler B J 1980 Phys. Rev. Lett. 45 566 [35] Troullier N and Martins J 1991 Phys. Rev. B 43 1993 [36] Soler J M, Artacho E, Gale J D, GarcíA, Junquera J, Ordejón P and Sánchez D P 2002 J. Phys.: Condens. Matter 14 2745 [37] Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Cambridge University Press) [38] Long M Q, Wang L L, Chen K Q, Li X F, Zou B S and Shuai Z G 2007 Phys. Lett. A 365 489 [39] Geng H, Yin S W, Chen K Q and Shuai Z G 2005 J. Phys. Chem. B 109 12304 [40] Wan H Q, Zhou B H, Chen X W, Sun C Q and Zhou G H 2012 J. Phys. Chem. C 116 2570 [41] An Y P and Yang Z Q 2012 J. Appl. Phys. 111 043713
[1]
. [J]. 中国物理快报, 2023, 40(2): 27101-027101.
[2]
. [J]. 中国物理快报, 2022, 39(11): 117501-.
[3]
. [J]. 中国物理快报, 2022, 39(8): 87101-.
[4]
. [J]. 中国物理快报, 2022, 39(4): 47401-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 87103-087103.
[6]
. [J]. 中国物理快报, 2021, 38(7): 77101-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 66801-.
[8]
. [J]. 中国物理快报, 2021, 38(6): 68103-.
[9]
. [J]. 中国物理快报, 2021, 38(5): 50701-.
[10]
. [J]. 中国物理快报, 2021, 38(2): 27401-.
[11]
. [J]. 中国物理快报, 2020, 37(12): 127101-.
[12]
. [J]. 中国物理快报, 2021, 38(1): 17302-.
[13]
. [J]. 中国物理快报, 2020, 37(10): 107101-.
[14]
. [J]. 中国物理快报, 2020, 37(9): 97402-.
[15]
. [J]. 中国物理快报, 2020, 37(4): 47101-.