Raman Suppression in a Kilowatt Narrow-Band Fiber Amplifier
Man Hu1 , Yi-Feng Yang1 , Ye Zheng1 , Guang-Bo Liu1 , Jian-Hua Wang2 , Kai Liu1 , Xiao-Long Chen1 , Chun Zhao1 , Bing He1** , Jun Zhou1**
1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018002 Department of Space and Command, Academy of Equipment, Beijing 101416
Abstract :A novel technique to suppress stimulated Raman scattering in a high power narrow-band fiber amplifier is reported. By seeding with a combination of a broadband amplified spontaneous emission seed and a narrowband master oscillator seed, the Raman Stokes components can be reduced about 16 dB at a total output power of 1 kW. Raman suppression results are depicted in a different wavelengths seeding case and the same wavelength seeding case, respectively, with different seed power ratios.
收稿日期: 2015-12-11
出版日期: 2016-04-29
:
42.65.-k
(Nonlinear optics)
42.55.Wd
(Fiber lasers)
42.65.Dr
(Stimulated Raman scattering; CARS)
42.50.Hz
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
引用本文:
. [J]. 中国物理快报, 2016, 33(04): 44208-044208.
Man Hu, Yi-Feng Yang, Ye Zheng, Guang-Bo Liu, Jian-Hua Wang, Kai Liu, Xiao-Long Chen, Chun Zhao, Bing He, Jun Zhou. Raman Suppression in a Kilowatt Narrow-Band Fiber Amplifier. Chin. Phys. Lett., 2016, 33(04): 44208-044208.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/33/4/044208
或
https://cpl.iphy.ac.cn/CN/Y2016/V33/I04/44208
[1] Injeyan H and Goodno G 2011 High Power Laser Handbook (New York: McGraw-Hill) [2] Dajani I et al 2008 Opt. Express 16 14233 [3] Khitrov V et al 2014 Proc. SPIE 7686 76860A [4] Wirth C et al 2009 Opt. Express 17 1178 [5] Goodno G, McNaught S, Rothenberg J, McComb T, Thielen P, Wickham M and Weber M 2010 Opt. Lett. 35 1542 [6] Schmidt O, Rekas M, Wirth C, Rothhardt J, Rhein S, Kliner A, Strecker M, Schreiber T, Limpert J, Eberhardt R and Tunnermann A 2011 Opt. Express 19 4421 [7] Deng X, Wang F, Jia H, Xiang Y, Feng B, Li K and Zhou L 2012 Chin. Phys. Lett. 29 124211 [8] Wang Y, Xu C and Po H 2004 Opt. Commun. 242 487 [9] Kim J, Dupriez P, Codemard C, Nilsson J and Sahu J K 2006 Opt. Express 14 5103 [10] Zenteno L A, Wang J, Walton D T, Ruffin B A, Li M J, Gray S, Crowley A and Chen X 2005 Opt. Express 13 8921 [11] Fini J M, Mermelstein M D, Yan M F, Bise R T, Yablon A D, Wisk P W and Andrejco M J 2006 Opt. Lett. 31 2550 [12] Jansen F, Nodop D, Jauregui C, Limpert J and Tunnermann A 2009 Opt. Express 17 16255 [13] Nodop D, Jauregui C, Jansen F, Limpert J and Tunnermann A 2010 Opt. Lett. 35 2982 [14] Jauregui C, Limpert J and Tünnermann A 2009 Opt. Express 17 8476 [15] Wang Y 2005 IEEE J. Quantum Electron. 41 779 [16] Bronder T, Dajani I, Zeringue C and Shay T M 2010 US Patent 7764720 [17] Dajani I, Zeringue C and Shay T M 2009 IEEE J. Sel. Top. Quantum Electron. 15 406 [18] Wang X, Zhou P, Ma Y, Ma H, Xu X, Liu Z and Zhao Y 2010 Chin. Phys. Lett. 27 124201 [19] Henry L J, Shay T M, Hult D W and Rowland J K B 2010 Opt. Express 18 23939 [20] Zeringue C, Vergien C and Dajani I 2011 Opt. Lett. 36 618 [21] Hu M, Ke W, Yang Y, Lei M, Liu K, Chen X, Zhao C, Qi Y, He B, Wang X and Zhou J 2016 Chin. Opt. Lett. 14 011901 [22] Schreiber T, Liem A, Freier E, Matzdorf C, Eberhardt R, Jauregui C, Limpert J and Tunnermann A 2015 Proc. SPIE 8961 89611I
[1]
. [J]. 中国物理快报, 2022, 39(12): 124201-124201.
[2]
. [J]. 中国物理快报, 2022, 39(12): 124202-.
[3]
. [J]. 中国物理快报, 2022, 39(5): 53301-.
[4]
. [J]. 中国物理快报, 2022, 39(3): 34201-.
[5]
. [J]. 中国物理快报, 2021, 38(7): 74201-.
[6]
. [J]. 中国物理快报, 2021, 38(7): 74202-.
[7]
. [J]. 中国物理快报, 2020, 37(3): 34202-.
[8]
. [J]. 中国物理快报, 2019, 36(4): 44202-.
[9]
. [J]. 中国物理快报, 2019, 36(2): 27801-.
[10]
. [J]. 中国物理快报, 2019, 36(1): 14201-.
[11]
. [J]. 中国物理快报, 2018, 35(10): 104202-.
[12]
. [J]. 中国物理快报, 2018, 35(7): 74203-.
[13]
. [J]. 中国物理快报, 2018, 35(2): 24204-.
[14]
. [J]. 中国物理快报, 2017, 34(10): 100501-.
[15]
. [J]. 中国物理快报, 2017, 34(9): 98101-.