Electronic States of Difluorocarbene Calculated by Multireference Configuration Interaction Method
Er-Ping Sun1,2** , Ting-Qi Ren2 , Qi-Xin Liu1,2 , Quan Miao2 , Jin-Juan Zhang2 , Hai-Feng Xu3 , Bing Yan3
1 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590
2 College of Electronic, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012
Abstract :We investigate the geometries and energies of seven electronic states $\tilde {X}$$^{1}\!A_{1}$, $\tilde {A}$$^{1}\!B_{1}$, $\tilde {a}$$^{3}\!B_{1}$, $\tilde {B}$$^{1}\!A_{2}$, $\tilde {b}$$^{3}\!A_{2}$, $\tilde {C}$$^{1}\!B_{2}$ and $\tilde {c}$$^{3}\!B_{2}$ of CF$_{2}$ carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCI+Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF$_{2}$ related to the lowest dissociation limit are calculated at the icMRCI+Q/aug-cc-pVTZ level. The ab initio results will further increase our understanding of the structures and dynamics of electronic states of CF$_{2}$ radical.
收稿日期: 2015-09-03
出版日期: 2016-02-26
:
31.15.ae
(Electronic structure and bonding characteristics)
31.15.ag
(Excitation energies and lifetimes; oscillator strengths)
31.15.ac
(High-precision calculations for few-electron (or few-body) atomic systems)
引用本文:
. [J]. 中国物理快报, 2016, 33(02): 23101-023101.
Er-Ping Sun, Ting-Qi Ren, Qi-Xin Liu, Quan Miao, Jin-Juan Zhang, Hai-Feng Xu, Bing Yan. Electronic States of Difluorocarbene Calculated by Multireference Configuration Interaction Method. Chin. Phys. Lett., 2016, 33(02): 23101-023101.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/33/2/023101
或
https://cpl.iphy.ac.cn/CN/Y2016/V33/I02/23101
[1] Wentrup C 1962 Reactive Molecules the Neutral Reactive Intermediates in Organic Chemistry (New York: Wiley-Interscience)
[2] Liebman J F and Simons J 1986 Molecular Structure and Energetics (New York: Wiley-Interscience)
[3] Finlayson P B J and Pitts J N 1986 Atmospheric Chemistry: Fundamentals and Experimental Techniques (New York: Wiley-Interscience)
[4] Tomioka H 2004 Reactive Chemical Intermediates (New York: Wiley-Interscience)
[5] Kable S H, Reid S A and Sears T J 2009 Int. Rev. Phys. Chem. 28 435
[6] Venkateswarlu P 1950 Phys. Rev. 77 676
[7] Staemmler V 1974 Theor. Chim. Acta 35 309
[8] Cai Z 1993 J. Phys. Chem. 97 8399
[9] Schwartz M and Marshall P 1999 J. Phys. Chem. A 103 7900
[10] Sendt K and Bacskay G B 2000 J. Chem. Phys. 112 2227
[11] Lee E P F, Dyke J M and Wright T G 2000 Chem. Phys. Lett. 326 143
[12] Chau F T, Mok D K W, Lee E P F and Dyke J M 2005 ChemPhysChem 6 2037
[13] Sun E, Zhang J, Li R, Sun Q, Wei C, Xu H and Yan B 2014 Int. J. Quantum Chem. 114 66
[14] Laird R K, Andrews E B and Barrow R F 1950 Trans. Faraday Soc. 46 803
[15] Powell F X and David R L Jr 1966 J. Chem. Phys. 45 1067
[16] Mathews C W 1967 Can. J. Phys. 45 2355
[17] Mathews C W 1966 J. Chem. Phys. 45 1068
[18] Modica A P 1968 J. Phys. Chem. 72 4594
[19] Lefohn A S and Pimentel G C 1971 J. Chem. Phys. 55 1213
[20] Bondybey V E 1976 J. Mol. Spectrosc. 63 164
[21] Duperrex R and Bergh H 1979 J. Chem. Phys. 71 3613
[22] Hikida T, Tozawa T and Mori Y 1980 Chem. Phys. Lett. 70 579
[23] Davies P B, Lewis B W and Russell D K 1981 J. Chem. Phys. 75 5602
[24] Charo A and Lucia F C D 1982 J. Mol. Spectrosc. 94 363
[25] Ramsay D A 1985 J. Mol. Spectrosc. 113 495
[26] Schwartz R L, Davico G E, Ramond T M and Lineberger W C 1999 J. Phys. Chem. A 103 8213
[27] Cameron M R, Kable S H and Bacskay G B 1995 J. Chem. Phys. 103 4476
[28] Wang C, Chen C, Dai J and Ma X 1998 Chem. Phys. Lett. 288 473
[29] Chau F T, Dyke J M, Lee E P F and Mok D K W 2001 J. Chem. Phys. 115 5816
[30] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[31] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[32] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[33] Dunning J T H 1989 J. Chem. Phys. 90 1007
[34] Werner H J, Knowles P J et al 2010 MOLPRO: a package of ab initio programs
[35] Bacskay G B 2014 Theor. Chem. Acc. 133 1474
[36] Sun E, Li R, Sun Q, Wei C, Xu H and Yan B 2012 J. Phys. Chem. A 116 10435
[37] Sun E, Lv H, Shi D, Wei C, Xu H and Yan B 2014 J. Phys. Chem. A 118 2447
[1]
. [J]. 中国物理快报, 2021, 38(7): 76101-.
[2]
. [J]. 中国物理快报, 2018, 35(1): 13101-.
[3]
. [J]. 中国物理快报, 2016, 33(03): 36202-036202.
[4]
. [J]. 中国物理快报, 2015, 32(12): 123101-123101.
[5]
. [J]. 中国物理快报, 2014, 31(06): 63101-063101.
[6]
GAO Hui;SUN Xun;LIU Bao-An;XU Ming-Xia;HU Guo-Hang;XU Xin-Guang;ZHAO Xian. Effect of S Substitution for P Point Defects in KDP Crystals: First-Principles Study [J]. 中国物理快报, 2010, 27(7): 73101-073101.
[7]
ZHANG Yue-Xia;KANG Shuai;SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field [J]. 中国物理快报, 2008, 25(11): 3946-3949.
[8]
I. Guseinov;R. Aydin;A. Bagci. Application of Complete Orthonormal Sets of Ψα -Exponential-Type Orbitals to Accurate Ground and Excited States Calculations of One-Electron Diatomic Molecules Using Single-Zeta Approximation [J]. 中国物理快报, 2008, 25(8): 2841-2844.