A simple method to determine the traps' density of state (DOS) in organic light-emitting diodes (OLEDs) by manipulating the current–voltage ($I$–$V$) characteristic of the devices at room temperature is introduced. In particular, the trap-dependent space-charge limited current formula is simplified to obtain effective density of traps. In this study, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT) and 2-Methoxy-5-(3$'$,7$'$-dimethyloctyloxy) benzene-1,4-diacetonitrile (OC$_{1}$C$_{10}$-PPV) are selected as the OLEDs emissive layer. The trap DOS of F8BT- and OC$_{1}$C$_{10}$-PPV-based OLEDs are calculated in the magnitudes of 10$^{24}$ m$^{-3}$ and 10$^{23}$ m$^{-3}$, respectively. In addition, the results agree with the other conventional method which is used to determine the trap DOS in OLEDs. This calculation technique may serve as a robust and reliable approach to obtain the trap DOS in OLEDs at room temperature.
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
引用本文:
. [J]. 中国物理快报, 2016, 33(01): 18101-018101.
M. S. Zaini, M. A. Mohd Sarjidan, W. H. Abd. Majid. Determination of Traps' Density of State in OLEDs from Current–Voltage Analysis. Chin. Phys. Lett., 2016, 33(01): 18101-018101.