Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor
TANG Xiao-Yu1,2, LU Ji-Wu2, ZHANG Rui2, WU Wang-Ran1, LIU Chang1, SHI Yi1, HUANG Zi-Qian3, KONG Yue-Chan3, ZHAO Yi1,2,4**
1School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 3Nanjing Electronic Devices Institute, Nanjing 210016 4State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
Abstract:Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15 nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nm-thick Al2O3 as a buried oxide by using the direct wafer bonding method. Back gate n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs) are fabricated by using these In0.53Ga0.47As-OI structures with excellent electrical characteristics. Positive bias temperature instability (PBTI) and hot carrier injection (HCI) characterizations are performed for the In0.53Ga0.47As-OI nMOSFETs. It is confirmed that the In0.53Ga0.47As-OI nMOSFETs with a thinner body thickness suffer from more severe degradations under both PBTI and HCI stresses. Moreover, the different evolutions of the threshold voltage and the saturation current of the UTB In0.53Ga0.47As-OI nMOSFETs may be due to the slow border traps.
[1] del Alamo J A 2011 Nature479 317 [2] Heyns M, Alian A, Brammertz G et al 2011 IEEE Int. Electron. Devices Meeting (Washington DC, 05–07 December 2011) p 299 [3] Ko H, Takei K, Kapadia R et al 2010 Nature468 286 [4] Yuan T, Buchanan D A, Wei C et al 1997 Proc. IEEE85 486 [5] Gu J J, Liu Y Q, Wu Y Q et al 2012 IEEE Int. Electron. Devices Meeting (San Francisco CA, 10–13 December. 2012) p 633 [6] Czornomaz L, Daix N, Cheng K et al 2013 IEEE Int. Electron. Devices Meet (Washington DC, 09–11 December 2013) p 52 [7] Yokoyama M, Yasuda T, Takagi H et al 2009 VLSI Symp. Tech. Dig. (Kyoto 15–18 June 2009) p 242 [8] Gomg X, Liu B and Yeo Y C 2013 IEEE Trans. Device Mater. Reliab.13 524 [9] Jiao G F, Cao W, Xuan Y et al 2011 IEEE Int. Electron. Devices Meeting (Washington DC, 05–07 December 2011) p 606 [10] Wrachien N, Cester A, Bari D et al 2012 Prco. Int. Rel. Phys. Symp. (Anaheim CA, 15–19 April 2012) p 3D.4 [11] Gong X, Su S, Liu B, Wang L et al 2012 VLSI Symp. Tech. (Hawaii, 12–14 June 2012) p 99 [12] Prasad C 2014 Proc. Int. Symp. VLSI Technol. Syst. Appl. (Hsinchu, 28–30 April 2014) p 1 [13] Hu C, Tam S C, Hsu F C et al 1985 IEEE Trans. Electron Devices32 375 [14] Franco J, Alian A, Kaczer B et al 2014 Proc. Int. Rel. Phys. Symp. (Waikoloa, 1–5 June 2014) p 6A.2 [15] Yokoyama M, Yasuda T, Takagi H et al 2010 Appl. Phys. Lett.96 142106 [16] Goldberg Y A and Schmidt N M 1999 Handbook Series on Semiconductor Parameters (Singapore: World Scientific) [17] Kim S H, Yokoyama M, Taoka N et al 2012 VLSI Symp. Tech. (Hawaii, 12–14 June 2012) p 177 [18] Ramey S, Ashutosh A, Auth C et al 2013 Proc. Int. Rel. Phys. Symp. (Monterey CA 14–18 April 2013) p 4C.5 [19] Deora S, Bersuker G, Loh W Y et al 2013 IEEE Trans. Device Mater. Reliab.13 507 [20] Huang J, Goel N, Zhao H et al 2009 IEEE Int. Electron. Devices Meeting (Washington DC 09–11 December 2013) p 335 [21] Kuzum D, Jin-Hong P, Krishnamohan T, Wong H S P and Saraswat K C 2011 IEEE Trans. Electron Devices58 1015