Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film
LIANG Hui-Min, WANG Jing-Quan** , WANG Xue, WANG Gui-Mei
Hebei University of Engineering, Handan 056038
Abstract :A surface plasmon interference lithography assisted by a Fabry–Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal film is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.
收稿日期: 2015-03-30
出版日期: 2015-10-30
:
42.82.Cr
(Fabrication techniques; lithography, pattern transfer)
42.79.-e
(Optical elements, devices, and systems)
52.35.Hr
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
[1] Luo X and Ishihara T 2004 Appl. Phys. Lett. 84 4780 [2] Srituravanich W, Fang N, Durant S, Ambati M, Sun C and Zhang X 2004 J. Vac. Sci. Technol. B 22 3475 [3] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107 [4] Srituravanich W, Durant S, Lee H, Sun C and Zhang X 2005 J. Vac. Sci. Technol. B 23 2636 [5] Liu Z, Wei Q and Zhang X 2005 Nano Lett. 5 957 [6] Zeng B, Pan L, Liu L, Fang L, Wang C and Luo X 2009 J. Opt. A: Pure Appl. Opt. 11 125003 [7] Yang X F, Fang L, Zeng B B, Wang C, Feng Q and Luo X 2010 J. Opt. 12 045001 [8] Guo K, Liu J L, Zhou K Y and Liu S T 2015 Chin. Phys. B 24 047301 [9] Bouhelier A, Ignatovich H, Bruyant A, Huang C, Francs G C, Weeber J C, Dereux A, Wiederrecht G P and Novotny L 2007 Opt. Lett. 32 2535 [10] Bezus E A, Bykov D A, Doskolovich L L and Kadomin I I 2008 J. Opt. A: Pure Appl. Opt. 10 095204 [11] Murukeshan V M and Sreekanth K V 2009 Opt. Lett. 34 845 [12] Guo X W, Du J L, Guo Y K and Yao J 2006 Opt. Lett. 31 2613 [13] Guo X W, Du J L, Luo X G, Du C L and Guo Y K 2007 Microelectron. Eng. 84 1037 [14] Lim Y, Kim S, Kim H, Jung J and Lee B 2008 IEEE J. Quantum Electron. 44 305 [15] Fang L, Du J L, Guo X W, Wang J Q, Zhang Z Y, Luo X G and Du C L 2008 Chin. Phys. B 17 2499 [16] Sreekanth K V and Murukeshan V M 2010 J. Vac. Sci. Technol. B 28 128 [17] Guo X and Dong Q 2010 J. Appl. Phys. 108 113108 [18] Liang H M and Wang J Q 2011 Chin. Phys. Lett. 28 018101 [19] Guo X, Dong Q, Shi R, Li S and Du J 2013 Microelectron. Eng. 105 103 [20] Wang J and Liang H 2013 J. Appl. Phys. 113 233101 [21] Dong J, Liu J, Liu P, Liu J, Zhao X, Kang G, Xie J and Wang Y 2013 Opt. Commun. 288 122 [22] Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C and Luo X 2015 Appl. Phys. Lett. 106 093110 [23] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) [24] Rakic A D, Djurisic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[1]
. [J]. 中国物理快报, 2022, 39(2): 24201-.
[2]
. [J]. 中国物理快报, 2018, 35(4): 44203-.
[3]
. [J]. 中国物理快报, 2016, 33(09): 94201-094201.
[4]
. [J]. 中国物理快报, 2014, 31(04): 44204-044204.
[5]
LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi, ZHAO Jian-Yi, LIU Wen, XU Yuan-Zhong. Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application [J]. 中国物理快报, 2012, 29(6): 64210-064210.
[6]
KONG Duan-Hua** , ZHU Hong-Liang, LIANG Song** , QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser [J]. 中国物理快报, 2012, 29(2): 24201-024201.
[7]
CHEN Xi**;FAN Zhong-Chao;ZHANG Jing;SONG Guo-Feng;CHEN Liang-Hui. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection [J]. 中国物理快报, 2010, 27(12): 124210-124210.
[8]
YANG Zhi-Feng;WU Ai-Min;FANG Na;JIANG Xun-Ya;LIN Xu-Lin;WANG Xi;ZOU Shi-Chang. Self-Collimation in Planar Photonic Crystals Fabricated by CMOS Technology [J]. 中国物理快报, 2010, 27(2): 24203-024203.
[9]
WANG Chun-Xia;XU Xing-Sheng;XIONG Gui-Guang;HU Hai-Yang;SONG Qian;DU Wei;CHEN Hong-Da. Structure Tuning of Line-Defect Waveguides Based on Silicon-on-Insulator Photonic Crystal Slabs [J]. 中国物理快报, 2007, 24(3): 738-740.
[10]
ZHANG Liang;LI Jing;LI Cheng-Fang;ZHANG Fei;SHI Li-Na. A Novel Nano-Grating Structure of Polarizing Beam Splitters [J]. 中国物理快报, 2006, 23(7): 1820-1822.
[11]
LOU Shu-Qin;FANG Hong;GUO Tie-Ying;JIAN Shui-Sheng. Investigation on the Fabrication of Photonic Crystal Fibre [J]. 中国物理快报, 2006, 23(4): 860-863.
[12]
JIN Guo-Liang;SHAO Gong-Wang;Mu Huan;HU Li-Li;LI Qu. Gain and Noise Figure of a Double-Pass Waveguide Amplifier Based on Er/Yb-Doped Phosphate Glass [J]. 中国物理快报, 2005, 22(11): 2862-2864.
[13]
XIONG Jun;HUANG Feng;CAO De-Zhong;LI Hong-Guo;SUN Xu-Juan;WANG Kai-Ge. Super-Resolution of Interference Pattern with Independent Laser Beams [J]. 中国物理快报, 2005, 22(11): 2824-2826.
[14]
ZHANG Xi-Zhen;WANG Fei;ZHANG Hai-Ming;ZHANG Da-Ming;SUN Wei. Fabrication of 32×32 Arrayed Waveguide Grating Using Fluorinated Polymers [J]. 中国物理快报, 2005, 22(8): 1955-1957.
[15]
YANG Di;LI Yan-Ping;CHEN Shao-Wu;YU Jin-Zhong. A 4×4 Strictly Nonblocking Silicon-on-Insulator Thermo-Optic Switch Matrix [J]. 中国物理快报, 2005, 22(6): 1446-1448.